Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình hộp \(ABCD.{A_1}{B_1}{C_1}{D_1}.\)
a) Chứng minh rằng đường chéo \({B_1}D\) cắt \(mp\left( {{A_1}B{C_1}} \right)\) tại điểm G sao cho \({B_1}G = {1 \over 2}GD\) và G là trọng tâm của tam giác \({A_1}B{C_1}.\)
b) Chứng minh rằng \(\left( {{D_1}AC} \right)//\left( {B{A_1}{C_1}} \right)\) và trọng tâm G’ của tam giác \({D_1}AC\) cũng nằm trên \({B_1}D\) và \({B_1}G' = {2 \over 3}{B_1}D.\)
c) Gọi P, Q, R lần lượt là các điểm đối xứng của điểm \({B_1}\) qua \(A,\,{D_1}\) và C. Chứng minh rằng \(\left( {PQR} \right)//\left( {B{A_1}{C_1}} \right)\).
d) Chứng minh rằng D là trọng tâm tứ diện \({B_1}PQR.\)
Lời giải chi tiết
a) Gọi \({O_1}\) là giao điểm của \({A_1}{C_1}\) và \({B_1}{D_1}.\) Khi đó \(\left( {{A_1}B{C_1}} \right) \cap \left( {B{\rm{D}}{D_1}{B_1}} \right) = B{O_1}.\)
Gọi G là giao điểm của \({B_1}D\) và \(B{O_1}\) thì G chính là giao điểm của \({B_1}D\) với \(\left( {{A_1}B{C_1}} \right).\) Dễ thấy \(\Delta GBD \sim \Delta G{O_1}{B_1},\) tỉ số đồng dạng là 2 (do \({{BD} \over {{B_1}{O_1}}} = 2\)).
Vậy \({B_1}G = {1 \over 2}GD\) và \(G{O_1} = {1 \over 2}GB,\) suy ra G là trọng tâm tam giác \({A_1}B{C_1}.\)
b) Dễ thấy
\(AC//{A_1}{C_1},\,{D_1}A//{C_1}B \Rightarrow \left( {{D_1}AC} \right)//\left( {B{A_1}{C_1}} \right).\)
Chứng minh tương tự như câu a), ta có trọng tâm G’ của tam giác \({D_1}AC\) nằm trên đường chéo \(D{B_1}\) và \(DG' = {1 \over 2}G'{B_1}.\) Từ đó và kết quả của câu a), suy ra G và G’ chia đường chéo \({B_1}D\) thành ba phần bằng nhau.
Vậy \({B_1}G' = {2 \over 3}{B_1}D.\)
c) Do \(A,\,{D_1},\,C\) lần lượt là trung điểm của \(P{B_1},\,Q{B_1},\,R{B_1}\) nên
\(PQ//A{D_1},\,QR//{D_1}C,\,RP//CA.\)
Từ đó suy ra: \(\left( {PRQ} \right)//\left( {A{D_1}C} \right).\)
Mặt khác, theo câu b), ta có \(\left( {{D_1}AC} \right)//\left( {B{A_1}{C_1}} \right),\) nên \(\left( {PRQ} \right)//\left( {B{A_1}{C_1}} \right).\)
d) Vì \(A,\,{D_1},\,C\) lần lượt là trung điểm của \({B_1}P,\,{B_1}Q,\,{B_1}R\) nên trọng tâm G” của tam giác PRQ phải nằm trên đường thẳng \({B_1}G'\) và \({B_1}G'' = 2{B_1}G'.\) Mặt khác \({B_1}G' = {2 \over 3}{B_1}D,\) nên
\({B_1}G'' = {4 \over 3}{B_1}D \Rightarrow {B_1}D = {3 \over 4}{B_1}G''.\)
Vậy D là trọng tâm tứ diện \({B_1}PQR.\)
Chủ đề 2. Làm chủ cảm xúc và các mối quan hệ
Bài 3. Phòng chống tệ nạn xã hội ở VN trong thời kì hội nhập quốc tế
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương IX - Hóa học 11
Chương VII. Ô tô
Chủ đề 1. Giới thiệu chung về chăn nuôi
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11