Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chữ nhật ABCD có AB = a, AD = b. Gọi S là điểm sao cho SA vuông góc với mp(ABC) và SA = h (h > 0). Trên cạnh CD lấy điểm M bất kì, đặt CM = x (0 ≤ x ≤a).
a) Tính diện tích tam giác SBM theo a, b, h, x.
b) Tính khoảng cách từ điểm A đến mp(SBM) khi M là trung điểm của CD.
c) Gọi hình chiếu của điểm A và điểm D trên mp(SBM) lần lượt là A1 và D1. Chứng minh rằng khi M thay đổi trên CD thì các điểm A1 và D1 thuộc một đường tròn cố định. Tính bán kính của mỗi đường tròn đó.
Lời giải chi tiết
a) Kẻ \(AK \bot MB\), do \(SA \bot \left( {ABC} \right)\) nên \(SK \bot MB\) (định lí ba đường vuông góc).
Vậy \({S_{SBM}} = {1 \over 2}BM.SK\)
Mặt khác \(BM = \sqrt {{b^2} + {x^2}} \) và \(AK.MB = 2{{\rm{S}}_{AMB}} = ab\)
tức là \(AK = {{ab} \over {\sqrt {{b^2} + {x^2}} }}\)
Từ đó
\(\eqalign{ & S{K^2} = S{A^2} + A{K^2} = {h^2} + {{{a^2}{b^2}} \over {{b^2} + {x^2}}} \cr & = {{{a^2}{b^2} + {b^2}{h^2} + {h^2}{x^2}} \over {{b^2} + {x^2}}} \cr} \)
Vậy \({S_{SBM}} = {1 \over 2}\sqrt {{a^2}{b^2} + {b^2}{h^2} + {h^2}{x^2}} \)
b) Với A1 là hình chiếu A trên SK, dễ thấy \(A{A_1} \bot \left( {SBM} \right)\).
Từ đó \(A{A_1}.SK = SA.AK\)
suy ra \(A{A_1} = {{SA.AK} \over {SK}}\)
hay
\(\eqalign{ & A{A_1} = {{h.{{ab} \over {\sqrt {{b^2} + {x^2}} }}} \over {{{\sqrt {{a^2}{b^2} + {b^2}{h^2} + {h^2}{x^2}} } \over {\sqrt {{b^2} + {x^2}} }}}} \cr & = {{abh} \over {\sqrt {{a^2}{b^2} + {b^2}{h^2} + {h^2}{x^2}} }} \cr} \)
Khi trung điểm DC thì \(x = {a \over 2}\) nên
\(A{A_1} = {{2abh} \over {\sqrt {4{a^2}{b^2} + 4{b^2}{h^2} + {a^2}{h^2}} }}\)
c) Vì \(A{A_1} \bot \left( {SMB} \right)\) nên \(A{A_1} \bot SB\) mặt khác \(A{\rm{D}} \bot SB\), từ đó \(mp\left( {A{\rm{D}}{A_1}} \right) \bot SB.\)
Gọi giao điểm của SB với mp(ADA1) là I thì \(AI \bot SB\), từ đó I là điểm cố định và mp(ADA1) cố định.
Như vậy, điểm A1 nhìn AI cố định dưới góc vuông và A1 thuộc mặt phẳng cố định (ADI), tức là A1 thuộc đường tròn đường kính AI trong mp(ADI).
Bán kính của đường tròn đó bằng \({{AI} \over 2}\) mà
\(AI.SB = SA.AB\)
hay \(AI = {{ah} \over {\sqrt {{a^2} + {h^2}} }}\)
Vậy bán kính của đường tròn trên bằng \({{ah} \over {2\sqrt {{a^2} + {h^2}} }}\).
Vì D1 là hình chiếu của D trên mp(SBM) nên DD1 // AA1 và dễ thất D1 thuộc đường thẳng A1I.
Như vậy, D1 thuộc mp(ADI) và D1 nhìn DI dưới góc vuông, tức là điểm D1 thuộc đường tròn đường kính DI trong mp(ADI). Bán kính của đường tròn đó \({{DI} \over 2}\).
Mặt khác
\(\eqalign{ & D{I^2} = D{A^2} + A{I^2} \cr & = {b^2} + {{{a^2}{h^2}} \over {{a^2} + {h^2}}} \cr & = {{{a^2}{b^2} + {b^2}{h^2} + {a^2}{h^2}} \over {{a^2} + {h^2}}} \cr} \)
Từ đó, bán kính của đường tròn đó là
\({1 \over 2}\sqrt {{{{a^2}{b^2} + {a^2}{h^2} + {b^2}{h^2}} \over {{a^2} + {h^2}}}} \)
Phần 1. Một số vấn đề về kinh tế - xã hội thế giới
Review 4
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Hóa học lớp 11
Projects 1-4: Presentation/Performance
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11