Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình chóp cụt tam giác đều ABC.A’B’C’ có các cạnh đáy lần lượt là a, b (a>b). Góc giữa đường thẳng chứa đường cao và mặt phẳng chứa mặt bên là α. Tính:
a) Chiều cao, trung đoạn, cạnh bên của hình chóp cụt đó (đoạn thẳng nối trung điểm hai cạnh đáy thuộc một mặt bên gọi trung đoạn của hình chóp cụt đều).
b) Diện tích xung quanh, diện tích toàn phần của hình chóp cụt đó.
Lời giải chi tiết
a) Gọi S là đỉnh của hình chóp đều sinh ra hình chóp cụt đều A’B’C’.ABCD; các điểm H, H’ lần lượt là tâm hai đáy của hình chóp cụt đều; I là trung điểm của BC. Dễ thất \(\widehat {H{\rm{S}}I} = \alpha \), từ đó \(\widehat {SIH} = {90^0} - \alpha = \beta \).
Ta có \(HH' = I'J = JI.\tan \beta = JI.\cot \alpha \)
Mà \(JI = {{a\sqrt 3 } \over 6} - {{b\sqrt 3 } \over 6} = {{\sqrt 3 } \over 6}\left( {a - b} \right)\)
Vậy
\(\eqalign{ & HH' = {{\sqrt 3 } \over 6}\left( {a - b} \right)\cot \alpha \cr & II' = {{JI} \over {\cos \beta }} = {{JI} \over {\sin \alpha }} = {{\sqrt 3 \left( {a - b} \right)} \over {6\sin \alpha }} \cr & CC{'^2} = C'{K^2} + K{C^2} \cr & = {\left( {{{\sqrt 3 \left( {a - b} \right)} \over {6\sin \alpha }}} \right)^2} + {\left( {{{a - b} \over 2}} \right)^2} \cr & \Rightarrow CC' = {{a - b} \over {2\sqrt 3 \sin \alpha }}\sqrt {1 + 3{{\sin }^2}\alpha } \cr} \)
b)
\(\eqalign{ & {S_{xq}} = 3.{1 \over 2}\left( {B'C' + BC} \right).II' \cr & = {3 \over 2}\left( {a + b} \right){{\sqrt 3 \left( {a - b} \right)} \over {6\sin \alpha }} = {{\sqrt 3 } \over {4\sin \alpha }}\left( {{a^2} - {b^2}} \right) \cr & {S_{tp}} = {{\sqrt 3 } \over {4\sin \alpha }}\left( {{a^2} - {b^2}} \right) + {{\sqrt 3 } \over 4}\left( {{a^2} + {b^2}} \right) \cr & = {{\sqrt 3 } \over 4}\left( {{{{a^2} - {b^2}} \over {\sin \alpha }} + {a^2} + {b^2}} \right) \cr} \).
CHƯƠNG VI: HIĐROCABON KHÔNG NO
Bài 7. Pháp luật về quản lí vũ khí, vật liệu nổ, công cụ hỗ trợ
Unit 3: Social Issues
PHẦN MỘT. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (TIẾP THEO)
Unit 4: The Body
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11