Đề bài
Mệnh đề nào sau đây là mệnh đề đúng?
A. Một dãy số có giới hạn thì luôn luôn tăng hoặc luôn luôn giảm
B. Nếu \((u_n)\) là dãy số tăng thì \(\lim u_n= + ∞\)
C. Nếu \(\lim u_n= + ∞\) và \(\lim v_n= + ∞\) thì \(\lim (u_n– v_n) = 0\)
D. Nếu \(u_n= a^n\) và \(-1< a < 0\) thì \(\lim u_n=0\)
Phương pháp giải - Xem chi tiết
Xét tính đúng sai của từng đáp án.
Lời giải chi tiết
+) Câu A sai
“Một dãy số có giới hạn thì luôn luôn tăng hoặc luôn giảm” là mệnh đề sai.
Xét phần ví dụ sau:
Dãy số: \({u_n} = {{{{(-1)}^n}} \over n}\) có \(\lim {{{{( - 1)}^n}} \over n} = 0\)
Ta có: \({u_1} = - 1 < {u_2} = {1 \over 2},{u_2} = {1 \over 2} > {u_3} = - {1 \over 3}\)
\(⇒ \) Dãy số \(u_n\) không tăng cũng không giảm.
+) Câu B sai
“Nếu \((u_n)\) là dãy số tăng thì \(\lim(u_n) = + ∞\)” là mệnh đề sai, chẳng hạn: Dãy số \((u_n)\) với \({u_n} = 1 - {1 \over n}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = (1 - {1 \over {n + 1}}) - (1 - {1 \over n}) \) \(= {1 \over n} - {1 \over {n + 1}} \) \(= {1 \over {n(n + 1)}} > 0\)
\(⇒ (u_n)\) là dãy số tăng.
\({{\mathop{\rm limu}\nolimits} _n} = \lim (1 - {1 \over n}) = 1\)
+) Câu C sai, xem phần ví dụ sau:
Hai dãy số \({u_n} = {{{n^2}} \over {n + 2}},{v_n} = n + 1\)
+ \({{\mathop{\rm \lim u}\nolimits} _n} = \lim {{{n^2}} \over {n + 2}} = \lim {{{n^2}} \over {{n^2}({1 \over n} + {1 \over {{n^2}}})}} \) \(= \lim {1 \over {{1 \over n} + {2 \over {n^2}}}} = + \infty \)
+ \(\lim {v_n} = \lim (n + 1) = + \infty \)
+ Nhưng :
\(\eqalign{
& \lim ({u_n} - {v_n}) = \lim \left[ {{{{n^2}} \over {n + 2}} - (n + 1)} \right]\cr& = \lim {{ - 3n - 2} \over {n + 2}} = \lim {{n( - 3 - {2 \over n})} \over {n(1 + {2 \over n})}}\cr& = \lim {{ - 3 - {2 \over n}} \over {1 + {2 \over n}}} = - 3 \ne 0 \cr} \)
+) Câu D đúng vì \(\lim q^n= 0\) khi \(|q| <1\). Do đó: \(-1 < a < 0\) thì \(\lim a^n= 0\)
Chọn đáp án D.
Chủ đề 1. Tự tin là chính mình
Bài 9. Nhìn, nghe, phát hiện địch, chỉ mục tiêu, truyền tin liên lạc, báo cáo
Chủ đề 3. Quá trình giành độc lập dân tộc của các quốc gia Đông Nam Á
Skills (Units 3 - 4)
Chuyên đề 3. Danh nhân trong lịch sử Việt Nam
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11