Đề bài
Tính đạo hàm của hàm số: \(y = \sin ({\pi \over 2} - x)\)
Phương pháp giải - Xem chi tiết
Cách 1: chuyển \(\sin ({\pi \over 2} - x)\) thành \( \cos x\) rồi tính đạo hàm.
Cách 2: Hàm hợp \(y = y(u(x))\) có đạo hàm: \(y = y'_u. u'_x\)
Lời giải chi tiết
\(y = \sin ({\pi \over 2} - x) \)
Cách 1:
Ta có: \(\sin ({\pi \over 2} - x) = \cos x\) (do góc \({\pi \over 2} - x\) và \(x\) phụ nhau.)
\(\Rightarrow y = \sin ({\pi \over 2} - x) = \cos x\)
\(\Rightarrow y' = \cos' x\ = -\sin x\)
Cách 2:
Đặt \(u = {\pi \over 2} - x\) thì \(y = \sin u\) và \(u'_x = -1; \, y'_u = \sin'u = \cos u\).
Áp dụng đạo hàm hàm hợp ta có:
\(y' = y'_u . u'_x = \cos u . (-1) = (-1). cos({\pi \over 2} - x) = - \sin x\)
(do \(cos({\pi \over 2} - x) = sinx ).\)
Chủ đề 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước cách mạng tháng Tám năm 1945)
Unit 8: Cties
CHƯƠNG 7: HIĐROCACBON THƠM, NGUỒN HIĐROCACBON THIÊN NHIÊN. HỆ THỐNG HÓA VỀ HIĐROCACBON
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Unit 9: Social issues
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11