Câu hỏi 2 trang 35 SGK Hình học 12

Đề bài

Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên mặt phẳng ta được một nửa hình tròn bán kính R. Hỏi hình nón đó có bán kính r của đường tròn đáy và góc ở đỉnh của hình nón bằng bao nhiêu ?

Lời giải chi tiết

Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên mặt phẳng ta được một nửa hình tròn bán kính R

⇒ đường sinh có độ dài bằng R và chu vi đường tròn đáy (bán kính r) bằng nửa chu vi đường tròn bán kính R.

Chu vi đường tròn đáy hình nón chính là nửa chu vi đường tròn bán kính \(R\) nên \(2\pi r = \dfrac{1}{2}.2\pi R \Leftrightarrow r = \dfrac{R}{2}\)

Ta có: \(\displaystyle \sin \widehat {{A_1}} = {r \over l} = {r \over R} = {1 \over 2} \Rightarrow \widehat {{A_1}} = {30^0}\)

Suy ra, góc ở đỉnh hình chóp: \(\widehat A = 2\widehat {{A_1}} = {2.30^0} = {60^0}\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved