Đề bài
Tính đạo hàm của các hàm số: \(y = {x^{{{ - 2} \over 3}}};\,\,y = {x^\pi };\,\,y = {x^{\sqrt 2 }}\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức đạo hàm \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha - 1}}\)
Lời giải chi tiết
\(\eqalign{
& y' = ({x^{{{ - 2} \over 3}}})' = - {2 \over 3}.{x^{({{ - 2} \over 3} - 1)}} \cr &= {{ - 2} \over 3}.{x^{{{ - 5} \over 3}}} \cr
& y' = ({x^\pi })' = \pi .{x^{\pi - 1}} \cr
& y' = ({x^{\sqrt 2 }})' = \sqrt 2 .{x^{\sqrt 2 - 1}} \cr} \)
Đề kiểm tra 15 phút - Chương 1 – Hóa học 12
CHƯƠNG I. DAO ĐỘNG CƠ
CHƯƠNG V. SÓNG ÁNH SÁNG
Unit 1. Life Stories
Chương 2. Cacbohidrat