PHẦN GIẢI TÍCH - TOÁN 12

Câu hỏi 2 trang 62 SGK Giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

a) Tính \({\log _{\frac{1}{2}}}4,{\log _3}\dfrac{1}{{27}}\)

Phương pháp giải:

Tìm một số thực \(x\) thỏa mãn \({\left( {\dfrac{1}{2}} \right)^x} = 4\).

Tìm một số thực thỏa mãn \({3^x} = \dfrac{1}{{27}}\)

Lời giải chi tiết:

\({\log _{\frac{1}{2}}}4 =  - 2\) vì \({\left( {\dfrac{1}{2}} \right)^{ - 2}} = \dfrac{1}{{{2^{ - 2}}}} = 4\)

\({\log _3}\dfrac{1}{{27}} =  - 3\) vì \({3^{ - 3}} = \dfrac{1}{{{3^3}}} = \dfrac{1}{{27}}\)

LG b

b) Có các số \(x,y\) nào để \({3^x} = 0,{2^{y\;}} =  - 3\) hay không?

Phương pháp giải:

Nhận xét giá trị của \(3^x\) và \(2^y\) suy ra kết luận.

Lời giải chi tiết:

Không có số \(x,y\) nào để \({3^x} = 0;{2^{y\;}} =  - 3\) vì \({3^x}\; > 0;{2^y}\; > 0\) với mọi \(x,y\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved