Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi O là giao điểm của AC và BD; M và N lần lượt là trung điểm của SB và SD; P thuộc đoạn SC và không là trung điểm của SC.
Lời giải phần a
1. Nội dung câu hỏi
Tìm giao điểm E của đường thẳng SO và mặt phẳng (MNP).
2. Phương pháp giải
Để tìm giao điểm của đường thẳng và mặt phẳng, ta tìm giao điểm của đường thẳng đó với một đường thẳng trong mặt phẳng.
3. Lời giải chi tiết
Gọi E là giao điểm của SO và MN
Mà MN ⊂ (MNP)
Suy ra SO ∩ (MNP) = {E}.
Lời giải phần b
1. Nội dung câu hỏi
Tìm giao điểm Q của đường thẳng SA và mặt phẳng (MNP).
2. Phương pháp giải
Để tìm giao điểm của đường thẳng và mặt phẳng, ta tìm giao điểm của đường thẳng đó với một đường thẳng trong mặt phẳng.
3. Lời giải chi tiết
Gọi Q là giao điểm của PE và SA
Mà PE ⊂ (MNP)
Suy ra SA ∩ (MNP) = {Q}.
Lời giải phần c
1. Nội dung câu hỏi
Gọi I, J, K lần lượt là giao điểm của QM và AB, QP và AC, QN và AD. Chứng minh I, J, K thẳng hàng.
2. Phương pháp giải
Để chứng minh ba điểm thẳng hàng, ta chứng minh ba điểm đó cùng thuộc giao tuyến của hai mặt phẳng.
3. Lời giải chi tiết
Ta có: QM ∩ AB = {I};
Mà QM ⊂ (QMN), AB ⊂ (ABCD)
Suy ra I ∈ (QMN) ∩ (ABC) (1)
Ta lại có: QN ∩ AD = {K}
Mà QN ⊂ (QMN), AD ⊂ (ABCD)
Suy ra K ∈ (QMN) ∩ (ABCD ) (2)
Từ (1) và (2) suy ra (QMN) ∩ (ABCD ) = {IK}.
Mặt khác, ta có: QE ∩ AC = {J}
Mà QE ⊂ (QMN), AC ⊂ (ABCD)
Suy ra J ∈ (QMN) ∩ (ABCD )
Do đó J thuộc đường thẳng IK.
Suy ra I, J, K thẳng hàng.
Unit 9: Education in the future
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương III - Hóa học 11
Chủ đề 1: Vai trò, tác dụng của môn đá cầu; kĩ thuật tâng cầu và đỡ cầu
Unit 8: Celebrations - Lễ kỉ niệm
Unit 1: Food for Life
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11