Cho tam giác ABC; M và N lần lượt là trung điểm của hai cạnh AB và AC. Lấy điểm P sao cho N là trung điểm của đoạn thẳng MP.
Lời giải phần a
1. Nội dung câu hỏi
Hỏi tứ giác AMCP là hình gì? Vì sao?
2. Phương pháp giải
Dựa vào các dấu hiệu chứng minh AMCP là hình bình hành
3. Lời giải chi tiết
Tứ giác AMCP có hai đường chéo AC và MP cắt nhau tại trung điểm N của mỗi đường.
Do đó tứ giác AMCP là hình bình hành.
Lời giải phần b
1. Nội dung câu hỏi
Với điều kiện nào của tam giác ABC thì tứ giác AMCP là hình chữ nhật; hình thoi; hình vuông?
2. Phương pháp giải
Sử dụng các dấu hiệu nhận biết của hình chữ nhật, hình thoi, hình vuông suy ra:
Hình bình hành AMCP là hình chữ nhật thì tam giác ABC cân tại C
Hình bình hành AMCP là hình thoi thì tam giác ABC vuông tại C
Hình bình hành AMCP là hình vuông thì tam giác ABC vuông cân tại C
3. Lời giải chi tiết
Do AMCP là hình bình hành nên ta có:
+) AM // CP hay BM // CP.
+) AM = CP, mà AM = BM (do M là trung điểm của AB) nên BM = CP.
Tứ giác BMPC có BM // CP và BM = CP nên tứ giác BMCP là hình bình hành.
• Để hình bình hành AMCP là hình chữ nhật thì AC = MP.
Mà BC = MP (vì tứ giác BMCP là hình bình hành).
Do đó AC = BC nên tam giác ABC là tam giác cân tại C.
Vây để hình bình hành AMCP là hình chữ nhật thì tam giác ABC là tam giác cân tại C.
• Để hình bình hành AMCP là hình thoi thì AM = CM hay .
Tam giác ABC có CM là đường trung tuyến ứng với cạnh AB của tam giác ABC.
Mà .
Khi đó tam giác ABC vuông tại C.
Vậy để hình bình hành AMCP là hình thoi thì tam giác ABC vuông tại C.
• Để hình bình hành AMCP là hình vuông thì hình bình hành AMCP là hình chữ nhật có AM = CM.
Do đó, tam giác ABC cân tại C có AM = CM.
Khi đó, tam giác ABC vuông cân tại C.
Vậy để hình bình hành AMCP là hình vuông thì tam giác ABC vuông cân tại C.
Unit 9: A first - Aid Course - Khoá học cấp cứu
Chủ đề 6. Gia đình yêu thương
Bài 4
Bài 12. Đặc điểm tự nhiên khu vực Đông Á
CHƯƠNG 2. VẬN ĐỘNG
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8