1. Nội dung câu hỏi
Cho hình hộp ABCD.A'B'C'D'. Một mặt phẳng song song với mặt bên (ABB'A') của hình hộp và cắt các cạnh AD, BC, A'D', B'C' lần lượt tại M, N, M', N' (H.4.54). Chứng minh rằng ABNM.A'B'N'M' là hình hộp.
2. Phương pháp giải
Hình lăng trụ tứ giác có hai đáy là hình bình hành được gọi là hình hộp.
3. Lời giải chi tiết
Vì ABCD.A'B'C'D' là hình hộp nên các cạnh bên AA', BB', CC', DD' đôi một song song với nhau và (ABCD) // (A'B'C'D').
Vì M thuộc AD và N thuộc BC nên MN nằm trong mặt phẳng ABCD, tương tự M'N' nằm trong mặt phẳng (A'B'C'D'). Do đó, (ABNM) // (A'B'N'M') (1).
Ta có: (ABB'A') // (MNN'M') và mặt phẳng (ABCD) cắt (ABB'A') và (MNN'M') lần lượt theo các giao tuyến AB và MN, do đó AB // MN.
Tương tự, ta chứng minh được: M'N' // A'B'; NN' // BB'; MM' // AA'.
Mà AA' // BB' do đó bốn đường thẳng AA', BB', NN', MM' đôi một song song với nhau (2).
Từ (1) và (2) suy ra ABNM.A'B'N'M' là hình lăng trụ.
Tứ giác ABNM có AB // MN và AM // BN (do AD // BC) nên ABNM là hình bình hành.
Tứ giác A'B'N'M' có A'B' // M'N' và A'M' // B'N' (do A'D' // B'C') nên A'B'N'M' là hình bình hành.
Hình lăng trụ ABNM.A'B'N'M' có đáy là hình bình hành nên nó là hình hộp.
Chương V. Công nghệ chăn nuôi
A - KHÁI QUÁT NỀN KINH TẾ - XÃ HỘI THẾ GIỚI
Review (Units 1 - 4)
CHƯƠNG 2: NITƠ - PHOTPHO
Unit 2: Express Yourself
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11