Câu hỏi 6 - Mục Bài tập trang 94

Lựa chọn câu hỏi để xem giải nhanh hơn
Lời giải phần a
Lời giải phần b
Lời giải phần c

Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi M là trung điểm của SA.

Lựa chọn câu hỏi để xem giải nhanh hơn
Lời giải phần a
Lời giải phần b
Lời giải phần c

Lời giải phần a

1. Nội dung câu hỏi

Xác định giao điểm của CD với mặt phẳng (SAB).


2. Phương pháp giải

Muốn tìm giao điểm của một đường thẳng a và mặt phẳng (P), ta tìm giao điểm của a và một đường thẳng b nằm trong (P):
ab=Mb(P)M=a(P)


3. Lời giải chi tiết

Trong mặt phẳng (ABCD) ta có: gọi giao điểm của AB và CD là N.

Mà AB ⊂ (SAB)

Do đó CD ∩ (SAB) = {N}.

Lời giải phần b

1. Nội dung câu hỏi

Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD).


2. Phương pháp giải

Để xác định giao tuyến của hai mặt phẳng, ta tìm điểm chung của chúng. Đường thẳng đi qua hai điểm chung là giao tuyến.


3. Lời giải chi tiết

Ta có: AB ∩ CD = {N};

              AB ⊂ (SAB);

              CD ⊂ (SCD)

Do đó N là giao điểm của (SAB) và (SCD).

Lại có: S ∈ (SAB) và S ∈ (SCD).

Nên S là giao điểm của (SAB) và (SCD).

Vì vậy (SAB) ∩ (SCD) = SN.

Lời giải phần c

1. Nội dung câu hỏi

Xác định giao tuyến của hai mặt phẳng (MCD) và (SBC).


2. Phương pháp giải

Để xác định giao tuyến của hai mặt phẳng, ta tìm điểm chung của chúng. Đường thẳng đi qua hai điểm chung là giao tuyến.


3. Lời giải chi tiết

Ta có: C ∈ (SBC) và C ∈ (MCD).

Do đó C là giao điểm của (SBC) và (MCD).

Trong mặt phẳng (SAB), gọi Q là giao điểm của MN và SB.

Mà MN ⊂ (MCD) và SB ⊂ (SBC)  

Suy ra Q là giao điểm của (SBC) và (MCD).

Vì vậy (SBC) ∩ (MCD) = CQ.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved