Đề bài
Chứng minh các bất đẳng thức \(\displaystyle{n \over {{n^2} + 1}} \le {1 \over 2};\,\,\,{{{n^2} + 1} \over {2n}} \ge 1\) với mọi \(n \in N*\).
Phương pháp giải - Xem chi tiết
Xét hiệu hai vế cần đánh giá và so sánh với \(0\).
Lời giải chi tiết
\(\eqalign{
& {{{n}} \over {{n^2} + 1}} - {1 \over 2} = {{2n - ({n^2} + 1)} \over {2({n^2} + 1)}} \cr & = \frac{{ - {n^2} + 2n - 1}}{{2\left( {{n^2} + 1} \right)}} = \frac{{ - \left( {{n^2} - 2n + 1} \right)}}{{2\left( {{n^2} + 1} \right)}}\cr &= {{ - {{(n - 1)}^2}} \over {2({n^2} + 1)}} \le 0;\,\,\forall n \in {N^*} \cr
& \text{Vì } 2\left( {{n^2} + 1} \right) > 0\text { và } - {\left( {n - 1} \right)^2} \le 0,\forall n\in N^*\cr &\Rightarrow {n \over {{n^2} + 1}} \le {1 \over 2};\,\,\forall n \in {N^*} \cr
& {{{n^2} + 1} \over {2n}} - 1 = {{{n^2} + 1 - 2n} \over {2n}} \cr &= {{{{(n - 1)}^2}} \over {2n}} \ge 0;\,\,\forall n \in N* \cr
& \text{Vì } 2n > 0\text { và } {\left( {n - 1} \right)^2} \ge 0,\forall n\in N^*\cr & \Rightarrow {{{n^2} + 1} \over {2n}} \ge 1;\,\,\forall n \in {N^*} \cr} \)
Chủ đề 3: Kĩ thuật nhảy ném rổ và chiến thuật tấn công trong bóng rổ
Chủ đề 2. Làm chủ cảm xúc và các mối quan hệ
Chương 2. Chương trình đơn giản
Unit 0: Introduction
Unit 1: Friendship - Tình bạn
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11