Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
Đề bài
Bài 1. Cho điểm \(M(-2;1)\) và đường thẳng (d) : \(y = -2x + 3\).
Viết phương trình của đường thẳng (d’) song song với (d) và qua M.
Bài 2. Cho hai đường thẳng (d): \(y = kx - 4\) và (d’) : \(y = 2x -1\). Tìm k để (d) cắt (d’) tại điểm M có hoành độ bằng 2.
Bài 3. Cho ba đường thẳng : \(y = 3x\) (d1); \(y = x + 2\) (d2); và \(y = (m – 3)x + 2m + 1\) (d3). Tìm m để ba đường thẳng đồng quy.
LG bài 1
LG bài 1
Phương pháp giải:
Hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\) song song với nhau khi và chỉ khi \(a = a', b ≠ b'\).
Lời giải chi tiết:
Vì (d’) // (d) nên phương trình (d’) có dạng : \(y = -2x + b\; (b ≠ 3)\)
\(M \in \left( {d'} \right)\)\(\; \Rightarrow 1 = \left( { - 2} \right).\left( { - 2} \right) + b \Rightarrow b = - 3\)
Vậy phương trình của (d’) là : \(y = -2x – 3\).
LG bài 2
LG bài 2
Phương pháp giải:
Tìm tọa sộ điểm M rồi thay tọa độ đó vào phương trình đường thẳng (d) ta sẽ tìm được k.
Lời giải chi tiết:
Ta có: \(M\left( {2;{y_0}} \right) \in \left( {d'} \right)\)\(\; \Rightarrow {y_0} = 2.2 - 1 \Rightarrow {y_0} = 3\)
Vậy: \(M(2; 3)\).
\(M \in \left( d \right) \Rightarrow 3 = 2k - 4 \Rightarrow k = {7 \over 2}\)
LG bài 3
LG bài 3
Phương pháp giải:
Tìm tọa độ giao điểm của \((d_1)\) và \((d_2)\), sau đó thay tọa độ đó vào phương trình đường thẳng \((d_3)\) ta sẽ tìm được m.
Lời giải chi tiết:
Phương trình hoành độ giao điểm của (d1) và (d2) :
\(3x = x + 2 ⇔ x = 1\)
Tọa độ giao điểm A của (d1) và (d2) là \(A(1; 3).\)
\(A \in \left( {{d_3}} \right)\)\(\; \Rightarrow 3 = \left( {m - 3} \right).1 + 2m + 1\)\(\; \Rightarrow 3m = 5 \Rightarrow m = {5 \over 3}\)
Đề kiểm tra 15 phút - Học kì 2 - Sinh 9
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Toán lớp 9
Bài 4: Bảo vệ hòa bình
Đề kiểm tra 15 phút - Chương 1 - Sinh 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hóa học 9