PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 1 - Bài 4 - Chương 2 - Đại số 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3

Đề bài

Đề bài

Bài 1. Cho điểm \(M(-2;1)\) và đường thẳng (d) : \(y = -2x + 3\). 

Viết phương trình của đường thẳng (d’) song song với (d) và qua M. 

Bài 2. Cho hai đường thẳng (d): \(y = kx - 4\) và (d’) : \(y = 2x -1\). Tìm k để (d) cắt (d’) tại điểm M có hoành độ bằng 2.

Bài 3. Cho ba đường thẳng : \(y = 3x\) (d1); \(y = x + 2\) (d2); và \(y = (m – 3)x + 2m + 1\) (d3). Tìm m để ba đường thẳng đồng quy.

LG bài 1

LG bài 1

Phương pháp giải:

Hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\) song song với nhau khi và chỉ khi \(a = a', b ≠ b'\).

Lời giải chi tiết:

Vì (d’) // (d) nên phương trình (d’) có dạng : \(y = -2x + b\; (b ≠ 3)\)

\(M \in \left( {d'} \right)\)\(\; \Rightarrow 1 = \left( { - 2} \right).\left( { - 2} \right) + b \Rightarrow b =  - 3\)

Vậy phương trình của (d’) là : \(y = -2x – 3\).

LG bài 2

LG bài 2

Phương pháp giải:

Tìm tọa sộ điểm M rồi thay tọa độ đó vào phương trình đường thẳng (d) ta sẽ tìm được k.

Lời giải chi tiết:

Ta có: \(M\left( {2;{y_0}} \right) \in \left( {d'} \right)\)\(\; \Rightarrow {y_0} = 2.2 - 1 \Rightarrow {y_0} = 3\)

Vậy: \(M(2; 3)\). 

\(M \in \left( d \right) \Rightarrow 3 = 2k - 4 \Rightarrow k = {7 \over 2}\)

LG bài 3

LG bài 3

Phương pháp giải:

Tìm tọa độ giao điểm của \((d_1)\) và \((d_2)\), sau đó thay tọa độ đó vào phương trình đường thẳng \((d_3)\) ta sẽ tìm được m.

Lời giải chi tiết:

Phương trình hoành độ giao điểm của (d1) và (d2) :

\(3x = x + 2 ⇔ x = 1\)

Tọa độ giao điểm A của (d1) và (d2) là \(A(1; 3).\)

\(A \in \left( {{d_3}} \right)\)\(\; \Rightarrow 3 = \left( {m - 3} \right).1 + 2m + 1\)\(\; \Rightarrow 3m = 5 \Rightarrow m = {5 \over 3}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved