PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 5 - Bài 5 - Chương 2 - Hình học 9

Đề bài

Cho tam giác ABC, các đường cao AD, BE và CF. Gọi H là trực tâm của tam giác.

a. Chứng minh bốn điểm A, E, H, F cùng nằm trên một đường tròn xác định tâm I

b. Gọi O là trung điểm của BC. Chứng minh OE là tiếp tuyến của đường tròn (I).

Phương pháp giải - Xem chi tiết

a. Chứng minh tứ giác AEHF có tổng 2 góc đối bằng 180 độ

b. Sử dụng:

+Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh cạnh huyền

+Hai góc cùng phụ với góc thứ ba thì bằng nhau

Lời giải chi tiết

 

a. Ta có: \(\widehat {AFH} = \widehat {AEH} = 90^\circ \) (gt)

⇒ E, F nằm trên đường tròn đường kính AH có tâm I là trung điểm đoạn AH.

b. ∆BEC vuông tại E có O là trung điểm của BC (gt)

\( \Rightarrow OE = OB = {{BC} \over 2}\) nên \({\widehat E_3} = {\widehat B_1};{\widehat B_1} = {\widehat A_1}\) (cùng phụ với góc C)

∆AIE cân \( \Rightarrow {\widehat A_1} = {\widehat E_1}.\) Do đó \({\widehat E_3} = {\widehat E_1},\) mà \({\widehat E_1} + {\widehat E_2} = 90^\circ \) (gt)

\( \Rightarrow {\widehat E_3} + {\widehat E_2} = 90^\circ \) hay OE là tiếp tuyến của (I)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved