PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 2 - Bài 2 - Chương 1 - Hình học 9

Đề bài

Bài 1. Cho \(∆ABC\) vuông tại A. Chứng minh rằng : \({{AC} \over {AB}} = {{\sin B} \over {\sin C}}\)

Bài 2. Dựng góc nhọn \(α\) biết \(\sinα = 0,5\) (Vẽ hình và nêu cách dựng)

Phương pháp giải - Xem chi tiết

Sử dụng: 

Cho tam giác ABC vuông tại A, khi đó

\(\sin B=\dfrac{AC}{BC}(  = \dfrac{{cạnh\,đối}}{{cạnh\,huyền}})\)

\(\sin C=\dfrac{AB}{BC}\)

Lời giải chi tiết

 

Bài 1.

\(\sin B = {{AC} \over {BC}};\,{\mathop{\rm sinC}\nolimits}  = {{AB} \over {BC}}\)

Do đó: \({{\sin B} \over {\sin C}} = {{AC} \over {BC}}:{{AB} \over {BC}} = {{AC} \over {AB}}\)

Bài 2. \(\sin \alpha  = 0,5 = {1 \over 2}\)

Cách dựng:

         -  Dựng góc vuông \(xAy\).

         -  B thuộc tia Ay sao cho \(AB = 1\)

         -  Dựng cung tròn tâm B bán kính 2.

         -  Lấy C là giao điểm của \((B; 2)\) và tia Ax.

         - Nối B với C.

Khi đó \(\widehat {ACB} = \alpha \) là góc cần dựng.

Chứng minh:

Xét tam giác ABC vuông tại A có \(\sin \alpha=\sin C\)\(=\dfrac{AB}{BC}  = {1 \over 2}=0,5\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved