Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Cho ∆ABC nội tiếp đường tròn (O). Tia phân giác của góc A cắt BC ở D và cắt đường tròn ở E. Chứng minh rằng:
a) \(AB . AC = AD . AE\)
b) \(B{E^2} = AE.DE.\)
Phương pháp giải - Xem chi tiết
Sử dụng:
+ Hai góc nội tiếp cùng chắn 1 cung thì bằng nhau
+Tam giác đồng dạng
Lời giải chi tiết
a) Ta có AE là phân giác của góc A nên:
\(\widehat {BAE} = \widehat {CAE}\) \(\Rightarrow \) cung BE = cung CE
Lạicó: \(\widehat {ABC} = \widehat {AEC}\) ( góc nội tiếp cùng chắn cung AC)
Do đó ∆ABD đồng dạng với ∆AEC (g.g)
\(\Rightarrow\dfrac{{AB} }{ {AE}} = \dfrac{{AD} }{{AC}}\) \(\Rightarrow AB . AC = AD . AE\).
b) Xét ∆ABE và ∆BDE có :
+) \(\widehat {AEB}\) chung
+) \(\widehat {BAE} = \widehat {EBC}\) ( góc nội tiếp cùng chắn hai cung bằng nhau, cung BE = cung CE)
Do đó ∆ABE đồng dạng với ∆BDE (g.g)
\(\Rightarrow \dfrac{{BE} }{ {DE}} = \dfrac{{AE} }{ {BE}} \Rightarrow B{E^2} = AE.DE\).
Đề thi vào 10 môn Toán Hà Nội
Đề thi vào 10 môn Anh Bình Dương
CHƯƠNG III. ADN VÀ GEN
CHƯƠNG 1: ĐIỆN HỌC
CHƯƠNG I. ĐIỆN HỌC