PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 2 - Bài 6 - Chương 3 - Hình học 9

Đề bài

M  là điểm chuyển động trên nửa đường tròn đường kính AB. Trên tia AM lấy điểm N sao cho AN = BM. Tìm quỹ tích các điểm N.

Phương pháp giải - Xem chi tiết

-Phần thuận : Trên nửa mặt phẳng bờ AB có chứa nửa đường tròn ta dựng tiếp tuyến Ax. Trên Ax lấy điểm D sao cho AD = AB = 2R . Chứng minh N thuộc đường tròn đường kính AD.

-Phần đảo: Lấy điểm N’ bất kì thuộc nửa đường tròn đường kính AD. Nối N với A, đường AN’ cắt nửa đường tròn (O) tại M’. Ta chứng minh \(AN’ = BM’.\)

-Kết luận

Lời giải chi tiết

 

a) Phần thuận : Trên nửa mặt phẳng bờ AB có chứa nửa đường tròn ta dựng tiếp tuyến Ax. Trên Ax lấy điểm D sao cho AD = AB = 2R ( không đổi) nên D cố định.

Xét ∆ABM và ∆DAN có :

+) \(AB = AD\), ( cùng phụ với\(\widehat {MAB}\)),

+) \(BM = AN\) (gt).

Vậy \(∆ABM = ∆DAN\) (c.g.c) \(\Rightarrow \widehat {DNA} = \widehat {AMB} = 90^\circ \) ( AB là đường kính ).

Do A, D cố định nên N thuộc đường tròn đường kính AD.

Giới hạn: Khi M trùng A thì N trùng D.

Khi M trùng B thì N trùng A.

Do đó N chuyển động trên nửa đường tròn đường kính AD ( loại điểm A).

b) Phần đảo: Lấy điểm N’ bất kì thuộc nửa đường tròn đường kính AD. Nối N với A, đường AN’ cắt nửa đường tròn (O) tại M’. Ta phải chứng minh \(AN’ = BM’.\)

Thật vậy : Xét \(∆AM’B\) và \(∆DN’A\) có : \(\widehat {AM'B} = \widehat {DN'A} = 90^\circ ,\)\(AB = AD,\widehat {ABM'} = \widehat {DAN'}.\)

Vậy \(∆AM’B = ∆DN’A\) ( cạnh huyền – góc nhọn) \(\Rightarrow BM’ = AN’.\)

c) Kết luận: Quỹ tích các điểm N là nửa đường tròn đường kính AD ( loại điểm A).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved