PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 2 - Đại số 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
LG bài 4
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
LG bài 4

Đề bài

Đề bài

Bài 1. Cho hàm số \(y =  - x + b.\) Tìm b, biết rằng khi \(x = 1\) thì \(y = 5\). 

Bài 2. Chứng minh hàm số \(y =  - \sqrt 3 x + 1\) nghịch biến trên \(\mathbb R\) bằng định nghĩa

Bài 3. Tìm m để hàm số \(y = \left( {1 - 2m} \right)x\) đồng biến trên \(\mathbb R\).

Bài 4. Cho hàm số \(y = f\left( x \right) = \left( {\sqrt 2  - 1} \right)x + \sqrt 2 \) 

So sánh : \(f\left( {\sqrt 2  + 1} \right)\) và \(f\left( {\sqrt 2  + 2} \right)\)

LG bài 1

LG bài 1

Phương pháp giải:

Thay \(x=1;y=5\) vào hàm số đã cho để tìm \(b\).

Lời giải chi tiết:

Thay \(x=1;y=5\) vào hàm số đã cho, ta có: \(5 = -1 + b ⇒ b = 6.\) 

LG bài 2

LG bài 2

Phương pháp giải:

Giả sử \({x_1} < {x_2}\) và \({x_1},{x_2} \in \mathbb R\). Xét hiệu \(H = f\left( {{x_1}} \right) - f\left( {{x_2}} \right)\). 

+ Nếu \(H < 0\) thì hàm số đồng biến trên \(\mathbb R \)

+ Nếu \(H > 0\) thì hàm số nghịch biến trên \(\mathbb R \)

Lời giải chi tiết:

Với \({x_1},\,{x_2}\) bất kì thuộc \(\mathbb R\) và \({x_1}<{x_2}\).

Ta có:

\(\eqalign{  & f\left( {{x_1}} \right) =  - \sqrt 3 {x_1} + 1  \cr  & f\left( {{x_2}} \right) =  - \sqrt 3 {x_2} + 1  \cr  &  f\left( {{x_1}} \right) - f\left( {{x_2}} \right) =  - \sqrt 3 \left( {{x_1} - {x_2}} \right) > 0\cr&\left( {\text{Vì }\,{x_1} < {x_2} \Rightarrow {x_1} - {x_2} < 0} \right)  \cr  &  \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right) \cr} \)

Vậy hàm số nghịch biến trên \(\mathbb R\).

LG bài 3

LG bài 3

Phương pháp giải:

Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:

a) Đồng biến trên R khi \(a > 0\) 

b) Nghịch biến trên R khi \(a < 0.\) 

Lời giải chi tiết:

Hàm số đồng biến trên \(\mathbb R\) \( \Leftrightarrow 1 - 2m > 0 \Leftrightarrow m < {1 \over 2}\)

LG bài 4

LG bài 4

Phương pháp giải:

Sử dụng tính chất của hàm số đồng biến.

Lời giải chi tiết:

Hàm số đã cho có hệ số \(a = \sqrt 2  - 1 > 0\) nên hàm số đồng biến trên \(\mathbb R\). 

Lại có : \(\sqrt 2  + 1 < \sqrt 2  + 2\) \( \Rightarrow f\left( {\sqrt 2  + 1} \right) < f\left( {\sqrt 2  + 2} \right)\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved