PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 3 - Bài 3 - Chương 2 - Hình học 9

Đề bài

Cho đường tròn (O; R), đường kính AB cố định và dây AC. Biết rằng khoảng cách từ O lần lượt đến AC và BC là 8cm và 6cm. 

a. Tính độ dài các dây AC, BC và bán kính đường tròn.

b. Lấy D đối xứng với A qua C. Chứng minh ∆ABD cân.

c. Khi C di chuyển trên đường tròn (O). Chứng minh rằng D thuộc một đường tròn cố định.

Phương pháp giải - Xem chi tiết

- Trong một đường tròn, đường kính vuông góc với một dây thì qua trung điểm của dây ấy.

- Định lý Pytago: Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương các cạnh góc vuông.

Lời giải chi tiết

 

a. Kẻ OH, OK lần lượt vuông góc với AC và BC, ta có:

\(OH = 8cm, OK = 6cm\) 

và \(HA = HC = {{AC} \over 2}\)

\(KB = KC = {{BC} \over 2}\)   (định lí đường kính và dây cung)

AB là đường kính nên \(\widehat {ACB} = 90^\circ \). Do đó tứ giác CHOK là hình chữ nhật (có ba góc vuông)

\(⇒ OH = CK = 8cm ⇒ BC = 16cm\)

Tương tự có : \(AC = 12cm\)

Xét tam giác vuông OHC, ta có:

\(OC = \sqrt {O{H^2} + H{C^2}}  = \sqrt {{8^2} + {6^2}}\)\(\;  = 10\,\left( {cm} \right)\) (định lí Pi-ta-go)

b. ∆ABD có đường cao BC đồng thời là đường trung tuyến nên ∆ABD cân tại B.

c. Ta có: \(BD = BA = 2R \) (cmt), B cố định, 2R không đổi.

Vậy D thuộc đường tròn cố định tâm B và bán kính bằng 2R.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved