Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
Đề bài
Bài 1. Rút gọn : \(A = \left( {{{\sqrt a } \over {\sqrt a - 2}} + {{\sqrt a } \over {\sqrt a + 2}}} \right):{{\sqrt {4a} } \over {a - 4}}\,\,\,\,\,\)\(\left( {a > 0;a \ne 4} \right)\)
Bài 2. Tìm x để biểu thức có nghĩa : \(M = \sqrt { - {5 \over {2x + 4}}} \)
Bài 3. Chứng minh : \(\left( {1 + {{a + \sqrt a } \over {\sqrt a + 1}}} \right)\left( {1 - {{a - \sqrt a } \over {\sqrt a - 1}}} \right) = 1 - a\,\,\,\,\)\(\left( {a \ge 0;a \ne 1} \right)\)
Bài 4. Tìm x, biết : \(\sqrt {{{x - 1} \over {x + 1}}} = 2\)
LG bài 1
LG bài 1
Phương pháp giải:
Quy đồng mẫu thức rồi thực hiện phép tính và rút gọn phân thức.
Lời giải chi tiết:
Ta có:
\( A = \left[ {{{\sqrt a \left( {\sqrt a + 2 + \sqrt a - 2} \right)} \over {\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}} \right]:{{\sqrt {4a} } \over {a - 4}} \)
\(\,\,\,\,\, = {{2a} \over {a - 4}}.{{a - 4} \over {\sqrt 4 .\sqrt a }} = {{{{\left( {\sqrt a } \right)}^2}} \over {\sqrt a }} = \sqrt a \)
LG bài 2
LG bài 2
Phương pháp giải:
Sử dụng: \(\sqrt A \) có nghĩa khi \(A\ge 0\)
Lời giải chi tiết:
Biểu thức có nghĩa \( \Leftrightarrow {{ - 5} \over {2x + 4}} \ge 0 \Leftrightarrow 2x + 4 < 0 \Leftrightarrow x < - 2\)
LG bài 3
LG bài 3
Phương pháp giải:
Sử dụng \({\left( {\sqrt A } \right)^2} = A\) với \(A\ge 0\)
Lời giải chi tiết:
Biến đổi vế trái (VT), ta được :
\(VT = \left[ {1 + {{\sqrt a \left( {\sqrt a + 1} \right)} \over {\sqrt a + 1}}} \right].\left[ {1 - {{\sqrt a \left( {\sqrt a - 1} \right)} \over {\sqrt a - 1}}} \right] \)
\(\,\,\,\,\,\,\,\;\; = \left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right)\)
\(\;\;\;\;\;\;= {1^2} - {\left( {\sqrt a } \right)^2}\)
\( \,\,\,\,\,\,\, \;\;= 1 - a = VP\,\,\left( {đpcm} \right) \)
LG bài 4
LG bài 4
Phương pháp giải:
Sử dụng
\(\begin{array}{l}
\sqrt A = m\left( {m \ge 0} \right)\\
\Leftrightarrow A = {m^2}
\end{array}\)
Lời giải chi tiết:
Ta có: \(\sqrt {{{x - 1} \over {x + 1}}} = 2\) với \(x\ne -1\)
\(\begin{array}{l}
\Leftrightarrow \frac{{x - 1}}{{x + 1}} = 4\\
\Rightarrow x - 1 = 4x + 4\\
\Leftrightarrow 3x = - 5\\
\Leftrightarrow x = - \frac{5}{3}\,(tm)
\end{array}\)
Vậy \(x = - \frac{5}{3}\)
Mĩ thuật
Âm nhạc
Bài 8:Năng động, sáng tạo
Đề thi học kì 1 mới nhất có lời giải
CHƯƠNG 3. PHI KIM. SƠ LƯỢC VỀ BẢNG TUẦN HOÀN CÁC NGUYÊN TỐ HÓA HỌC