Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
Đề bài
Bài 1. Cho hai đường thẳng : \(y = 2x\) (d1) và \(y = -x + 3\) (d2).
a. Tìm tọa độ giao điểm A của (d1) và (d2).
b. Viết phương trình đường thẳng (d3) qua A và song song với đường thẳng \(y = x + 4\) (d)
Bài 2. Cho hai đường thẳng : \(y = mx - m + 2\) (d1) và \(y = (m - 3)x + m\) (d2). Tìm m để (d1) và (d2) cắt nhau tại một điểm trên trục tung.
Bài 3. Cho hai đường thẳng : \(y = (k - 2)x + m (k ≠ 2)\) (d1) và \(y = 2x + 3\) (d2). Tìm k và m để (d1) và (d2) trùng nhau.
LG bài 1
LG bài 1
Phương pháp giải:
Hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\) song song với nhau khi và chỉ khi \(a = a', b ≠ b'\).
Lời giải chi tiết:
a. Phương trình hoành độ giao điểm của (d1) và (d2):
\(2x = -x + 3 ⇔ 3x = 3 ⇔ x = 1\)
Thế \(x = 1\) vào phương trình của (d1), ta có: \(y = 2.1 ⇔ y = 2.\)
Vậy tọa độ giao điểm cần tìm là \(A(1; 2)\).
b. (d3) // (d) nên phương trình của (d3) có dạng : \(y = x + m (m ≠ 4)\).
\(A \in \left( {{d_3}} \right) \Rightarrow 2 = 1 + m \Rightarrow m = 1\) (nhận)
Vậy phương trình của (d3) là : \(y = x + 1\).
LG bài 2
LG bài 2
Phương pháp giải:
Hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\) cắt nhau tại 1 điểm trên trục tung khi \(a \ne a', b = b'\).
Lời giải chi tiết:
(d1) và (d2) cắt nhau khi \(m\ne m-3\) hay \(0\ne -3\) (luôn đúng)
(d1) có tung độ gốc là \(–m + 2\), (d2 ) có tung độ gốc là \(m\).
Theo giả thiết để (d1) và (d2) cắt nhau tại một điểm trên trục tung thì: \(-m + 2 = m ⇔ m = 1.\)
LG bài 3
LG bài 3
Phương pháp giải:
Hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\) trùng nhau khi và chỉ khi \(a = a', b = b'\).
Lời giải chi tiết:
(d1) và (d2) trùng nhau \( \Leftrightarrow \left\{ {\matrix{ {k - 2 = 2} \cr {m = 3} \cr } } \right. \Leftrightarrow \left\{ {\matrix{ {k = 4} \cr {m = 3} \cr } } \right.\)
Đề thi vào 10 môn Văn Bạc Liêu
Bài 16. Thực hành: Vẽ biểu đồ về sự thay đổi cơ cấu kinh tế
Đề kiểm tra 1 tiết - Chương 6 - Sinh 9
Đề thi vào 10 môn Văn Bến Tre
SINH VẬT VÀ MÔI TRƯỜNG