PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 4 - Bài 1 - Chương 1 - Hình học 9

Đề bài

Cho \(∆ABC\) vuông tại A, biết \({{AB} \over {AC}} = {2 \over 3},\) đường cao \(AH = 6cm\). Tính các cạnh của tam giác.

Phương pháp giải - Xem chi tiết

Sử dụng tam giác đồng dạng và hệ thức lượng trong tam giác vuông.

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau:

+) \(A{B^2} = BH.BC\) và \(A{C^2} = CH.BC\)

+) \(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}}\)

Lời giải chi tiết

 

Ta có: \(∆AHB\) đồng dạng \(∆CHA\) (g.g) (vì có \(\widehat {BAH} = \widehat C\) (cùng phụ với \(\widehat B\) ))

\( \Rightarrow {{HA} \over {HC}} = {{AB} \over {AC}} = {2 \over 3} \)

\(\Rightarrow HC = {3 \over 2}HA = {3 \over 2}.6 = 9\,\left( {cm} \right)\)
Tương tự: \({{HA} \over {HB}} = {{AC} \over {AB}} = {3 \over 2}\)

\(\Rightarrow HB = {2 \over 3}HA = {2 \over 3}.6 = 4\,\left( {cm} \right)\)

Do đó: \(BC = HB + HC = 4 + 9 = 13 (cm)\) 

\(∆ABC\) vuông tại A, đường cao AH.

\( \Rightarrow A{B^2} = BC.BH\) (định lí 1)

\( \Rightarrow AB = \sqrt {BC.BH}  = \sqrt {13.4}  = 2\sqrt {13} \)\(\;(cm)\)

Tương tự, ta có:

\(AC = \sqrt {BC.CH}  = \sqrt {13.9}  = 3\sqrt {13} \)\(\,\left( {cm} \right)\)

Cách khác: Gọi cạnh huyền là a và hai cạnh góc vuông là b, c; đường cao là h.

Ta có: \({c \over b} = {2 \over 3} \Rightarrow b = {3 \over 2}c\)

Mặt khác ∆ABC vuông có h là đường cao:

\(\eqalign{  & {1 \over {{h^2}}} = {1 \over {{b^2}}} + {1 \over {{c^2}}}\cr&hay\,\,{1 \over {{6^2}}} = {1 \over {{{\left( {{3 \over 2}c} \right)}^2}}} + {1 \over {{c^2}}}\cr& \Leftrightarrow {1 \over {{6^2}}} = {4 \over {9{c^2}}} + {1 \over {{c^2}}}  \cr  &  \Leftrightarrow {c^2} = 16 + 36\cr& \Leftrightarrow {c^2} = 52 \Leftrightarrow c = 2\sqrt {13} \,\left( {cm} \right) \cr} \)

Do đó \(b = {3 \over 2}.2\sqrt {13}  = 3\sqrt {13} \,\left( {cm} \right)\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved