Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Ôn tập chương I. Tứ giác
Đề kiểm tra 15 phút - Chương 1
Đề kiểm tra 45 phút (1 tiết) - Chương 1
Đề bài
Cho tứ giác ABCD, phân giác trong của góc A và góc B cắt nhau tại E, phân giác ngoài của góc A và góc B cắt nhau tại F.
Chứng minh rằng : \(\widehat {AEB} = {{\widehat C + \widehat D} \over 2}\) và \(\widehat {AFB} = {{\widehat A + \widehat B} \over 2}.\)
Phương pháp giải - Xem chi tiết
Sử dụng: Tổng bốn góc trong tứ giác bằng \(360^0\)
Lời giải chi tiết
Vì BE, AE lần lượt là phân giác góc ABC và góc BAD nên \(\widehat {{B_1}} = \dfrac{{\widehat B}}{2};\widehat {{A_1}} = \dfrac{{\widehat A}}{2}\)
Xét \(\Delta ABE\) có \(\widehat {AEB} = {180^ \circ } - \left( {\widehat {{A_1}} + \widehat {{B_1}}} \right)\)
Suy ra \(\widehat {AEB} = {180^ \circ } - \left( {{{\widehat A} \over 2} + {{\widehat B} \over 2}} \right)\)
\(= {{{{360}^ \circ } - \left( {\widehat A + \widehat B} \right)} \over 2}\)
Lại có \(\widehat A + \widehat B + \widehat C + \widehat D = {360^ \circ }\) (tổng bốn góc trong tứ giác ABCD)
\( \Rightarrow \widehat C + \widehat D =360^0-( \widehat A + \widehat B )\)
\( \Rightarrow \widehat {AEB} = {{\widehat C + \widehat D} \over 2}\)
Ta có: \(\widehat {{B_2}} = \dfrac{{\widehat {xBA}}}{2};\widehat {{A_2}} = \dfrac{{\widehat {yAB}}}{2}\) (tính chất tia phân giác)
Xét \(\Delta ABF\) có \(\widehat {AFB} = {180^ \circ } - \left( {\widehat {{A_2}} + \widehat {{B_2}}} \right)\)
\(\begin{array}{l}
= {180^0} - \left( {\dfrac{{\widehat {xBA}}}{2} + \dfrac{{\widehat {yAB}}}{2}} \right)\\
= \dfrac{{{{360}^0} - \left( {\widehat {xBA} + \widehat {yAB}} \right)}}{2}\\
= \dfrac{{{{360}^0} - \left( {{{180}^0} - \widehat B + {{180}^0} - \widehat A} \right)}}{2}\\
= \dfrac{{\widehat A + \widehat B}}{2}
\end{array}\)
Vậy \( \widehat {AEB} = {{\widehat C + \widehat D} \over 2}\) và \(\widehat {AFB} = {{\widehat A + \widehat B} \over 2}.\)
Phần Địa lí
Chủ đề 4. Nhịp điệu quê hương
Unit 1. Fads and fashions
Bài 2: Liêm khiết
CHƯƠNG II. PHÂN THỨC ĐẠI SỐ
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8