Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Cho \(∆ABC\) cân tại A có \(AB = AC = 50cm, BC = 60cm\). Các đường cao AD và CE cắt nhau tại H. Tính CH.
Phương pháp giải - Xem chi tiết
Sử dụng định lý Pytago và tam giác đồng dạng.
Cho tam giác \(ABC\) vuông tại \(A\) ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lí Pitago).
Lời giải chi tiết
Ta có: \(∆ABC\) cân tại A nên đường cao AD đồng thời là đường trung tuyến:
\(DB = DC = {{BC} \over 2} = {{60} \over 2} = 30\,\left( {cm} \right)\)
Xét \(∆ADB\) có:
\(A{D^2} = A{B^2} - D{B^2}\) (định lí Pi-ta-go)
\( \Rightarrow AD = \sqrt {A{B^2} - D{B^2}} \)\(\;= \sqrt {{{50}^2} - {{30}^2}} = 40\,(cm)\)
Lại có: \( {S_{ABC}} = {1 \over 2}BC.AD = {1 \over 2}AB.CE \)
\(\Rightarrow CE = {{BC.AD} \over {AB}} = {{60.40} \over {50}} = 48\,\left( {cm} \right) \)
Ta có: \(∆CDH\) đồng dạng \(∆CEB\) (g.g) (do hai tam giác vuông có góc nhọn C chung)
\( \Rightarrow {{CH} \over {CB}} = {{DC} \over {CE}}\)
\(\Rightarrow CH = {{CB.DC} \over {CE}} = {{60.30} \over {48}} = 37,5\,\left( {cm} \right)\)
Đề thi vào 10 môn Văn An Giang
Đề thi vào 10 môn Toán Thanh Hóa
Bài 2. Dân số và gia tăng dân số
Đề thi vào 10 môn Toán Đà Nẵng
Các bài tập làm văn