PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 5 - Bài 1 - Chương 1 - Hình học 9

Đề bài

Cho \(∆ABC\) cân tại A có \(AB = AC = 50cm, BC = 60cm\). Các đường cao AD và CE cắt nhau tại H. Tính CH.

Phương pháp giải - Xem chi tiết

Sử dụng định lý Pytago và tam giác đồng dạng.

Cho tam giác \(ABC\) vuông tại \(A\) ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lí Pitago). 

Lời giải chi tiết

 

Ta có: \(∆ABC\) cân tại A nên đường cao AD đồng thời là đường trung tuyến:

\(DB = DC = {{BC} \over 2} = {{60} \over 2} = 30\,\left( {cm} \right)\)

Xét \(∆ADB\) có: 

\(A{D^2} = A{B^2} - D{B^2}\) (định lí Pi-ta-go)

\( \Rightarrow AD = \sqrt {A{B^2} - D{B^2}}  \)\(\;= \sqrt {{{50}^2} - {{30}^2}}  = 40\,(cm)\)

Lại có: \( {S_{ABC}} = {1 \over 2}BC.AD = {1 \over 2}AB.CE \)

\(\Rightarrow CE = {{BC.AD} \over {AB}} = {{60.40} \over {50}} = 48\,\left( {cm} \right)  \)

Ta có: \(∆CDH\) đồng dạng \(∆CEB\) (g.g) (do hai tam giác vuông có góc nhọn C chung)

\( \Rightarrow {{CH} \over {CB}} = {{DC} \over {CE}}\)

\(\Rightarrow CH = {{CB.DC} \over {CE}} = {{60.30} \over {48}} = 37,5\,\left( {cm} \right)\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved