Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Đề bài
Bài 1. Tính \(A = {\cos ^2}55^\circ - \cot 58^\circ + {{\tan 52^\circ } \over {\cot 38^\circ }}\)\(\, + {\cos ^2}35^\circ + \tan 32^\circ \)
Bài 2. Cho hình chữ nhật ABCD có đường chéo \(AC = 50cm\) và \(\widehat {BAC} = 30^\circ .\) Tính chu vi và diện tích hình chữ nhật.
LG bài 1
LG bài 1
Phương pháp giải:
Sử dụng:
Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
Lời giải chi tiết:
Ta có:
\({\cos ^2}35^\circ = {\sin ^2}55^\circ ;\cot 58^\circ = \tan 32^\circ ;\cot 38^\circ = \tan 52^\circ \)
Do đó:
\(\eqalign{ A &= {\cos ^2}55^\circ - \tan 32^\circ + {{\tan 52^\circ } \over {\tan 52^\circ }} + {\sin ^2}55^\circ + \tan 32^\circ \cr & = {\cos ^2}55^\circ + {\sin ^2}55^\circ + {{\tan 52^\circ } \over {\tan 52^\circ }} \cr&= 1 + 1 = 2 \cr} \)
LG bài 2
LG bài 2
Phương pháp giải:
Trong một tam giác vuông, mỗi cạnh góc vuông bằng:
a) Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.
b) Cạnh góc vuông kia nhân với tang góc đối hoặc nhân với côtang góc kề.
Lời giải chi tiết:
\(∆ABC\) vuông tại B có \(\widehat {BAC} = 30^\circ \) và \(AC = 50cm\) nên:
\(\eqalign{ & BC = AC.\sin 30^\circ \cr&\;\;\;\;\;\;\;= 50.\sin 30^\circ = 25\,\left( {cm} \right) \cr & AB = AC.\cos 30^\circ \cr&\;\;\;\;\;\;\; = 50.cos30^\circ = 25\sqrt 3 \,\left( {cm} \right) \cr} \)
Vậy chu vi hình chữ nhật ABCD là:
\(2(AB+BC) = 2\left( {25\sqrt 3 + 25} \right) \)
\(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= 50\left( {\sqrt 3 + 1} \right)\,\left( {cm} \right) \)
\( {S_{ABCD}} = AB.BC = 25\sqrt 3 .25 \)\(\;= 625\sqrt 3 \,\left( {c{m^2}} \right) \)
Unit 9: English in the world
Đề thi vào 10 môn Văn Hậu Giang
PHẦN MỘT: LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NAY
SỰ PHÂN HÓA LÃNH THỔ
CHƯƠNG I: CÁC THÍ NGHIỆM CỦA MENĐEN