Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Đường thẳng OO’ cắt (O) và (O’) lần lượt tại B và C (khác A). Gọi DE là tiếp tuyến chung ngoài của (O) và (O’). Trong đó, \(D ∈ (O), E ∈ (O’)\). Gọi H là giao điểm của hai đường thẳng BD và CE. Chứng minh rằng :
a. \(\widehat {DHE} = 90^\circ \)
b. HA là tiếp tuyến chung của hai đường tròn (O) và (O’).
Phương pháp giải - Xem chi tiết
a. Ta chứng minh tổng hai góc B và C bằng 90 độ từ đó suy ra DHE bằng 90 độ
b.Chứng minh HDAE là hình chữ nhật suy ra tam giác ODI bằng tam giác OAI
=>IA vuông góc với BC
Lời giải chi tiết
a. DE là tiếp tuyến chung ngoài của (O) và (O’) nên \(DE ⊥ OD\).
và \(DE ⊥ O’E ⇒ OD // O’E.\)
Do đó: \(\widehat {DOO'} + \widehat {EO'O} = 180^\circ \) (cặp góc trong cùng phía)
\( \Rightarrow \widehat {DOB} + \widehat {EO'C} = 180^\circ \)
Các tam giác BOD và CO’E cân tại O và O’ nên:
\(2\widehat B + 2\widehat C = 180^\circ \)
\(\Rightarrow 2\left( {\widehat B + \widehat C} \right) = 180^\circ \Rightarrow \widehat B + \widehat C = 90^\circ \)
Trong tam giác BHC ta có \(\widehat {BHC} = 90^\circ \,\,hay\,\,\widehat {DHE} = 90^\circ .\)
b. Dễ thấy tứ giác HDAE là hình chữ nhật (có ba góc vuông).
Gọi I là giao điểm hai đường chéo AH và DE, ta có \(ID = IA\) ( tính chất hai đường chéo hình chữ nhật).
Các tam giác ODI và OAI có : OI chung, \(DI = AI\) (cmt), \(OD = OA (=R)\)
Vậy \(∆ODI = ∆OAI\) (c.c.c)
\( \Rightarrow \widehat {OAI} = \widehat {ODI} = 90^\circ \) hay \(IA ⊥ BC\) tại A
\(⇒ HA\) là tiếp tuyến chung của (O) và (O’)
CHƯƠNG 4. HIĐROCACBON. NHIÊN LIỆU
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Sinh học lớp 9
Bài 10
Bài 13. Vai trò đặc điểm phát triển và phân bố của dịch vụ
CHƯƠNG II. ĐIỆN TỪ HỌC