Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Cho đường tròn (O), đường kính AB, tiếp tuyến tại điểm M thuộc (O) cắt hai tiếp tuyến tại A và B lần lượt tại C và D. Vẽ đường tròn tâm I có đường kính CD. Chứng minh AB tiếp xúc với đường tròn (I) tại O.
Phương pháp giải - Xem chi tiết
Sử dụng: Tính chất đường trung bình của hình thang
Chứng minh OI vuông góc với AB và bằng nửa CD
Lời giải chi tiết
AC và BD là tiếp tuyến của (O) nên \(AC ⊥ AB\) và \(BD ⊥ AB ⇒ AC // BD\)
Do đó tứ giác ACDB là hình thang vuông, có O là trung điểm AB, I là trung điểm CD nên OI là đường trung bình của hình thang vuông. Vì vậy OI // AC.
\(⇒ OI ⊥ AB\) (1) và \(OI = {{AC + BD} \over 2}\)
Dễ dàng chứng minh \(∆OAC = ∆OMC ⇒ AC = MC\)
Tương tự : \(BD = MD \)\(\;\Rightarrow OI = {{MC + MD} \over 2} = {{CD} \over 2}\,\left( 2 \right)\)
Từ (1) và (2) chứng tỏ AB là tiếp tuyến của (I)
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Toán lớp 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hóa học 9
Bài 8. Sự phát triển và phân bố nông nghiệp
Bài 7. Các nhân tố ảnh hưởng đến sự phát triển và phân bố nông nghiệp
Đề thi vào 10 môn Toán Quảng Trị