Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Đề bài
Bài 1. Không dùng bảng số và máy tính, hãy sắp xếp các tỉ số lượng giác sau đây theo thứ tự giảm dần : sin25˚; cos35˚; sin50˚; cos70˚.
Bài 2. Cho ∆ABC vuông tại A, biết \(\tan B = {3 \over 4}\). Hãy tính các tỉ số lượng giác của góc C.
LG bài 1
LG bài 1
Phương pháp giải:
Sử dụng: Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Xét góc nhọn, nếu góc tăng thì sin tăng và cosin giảm.
Lời giải chi tiết:
Ta có:
\(\eqalign{ & \cos 35^\circ = \sin \left( {90^\circ - 35^\circ } \right) = \sin 55^\circ \cr & \cos 70^\circ = \sin \left( {90^\circ - 70^\circ } \right) = \sin 20^\circ . \cr} \)
Mà \(\sin 55^\circ > \sin 50^\circ > \sin 25^\circ > \sin 20^\circ \)
\( \Rightarrow \cos 35^\circ > \sin 50^\circ > \sin 25^\circ \)\(\,> \cos 70^\circ \)
LG bài 2
LG bài 2
Phương pháp giải:
Sử dụng: Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Cho tam giác ABC có \(\widehat C =\alpha\), ta có:
\(\sin \alpha = \dfrac{{cạnh\,đối}}{{cạnh\,huyền}} = \dfrac{{AB}}{{BC}};\)\(\cos \alpha = \dfrac{{cạnh\,kề}}{{cạnh\,huyền}} = \dfrac{{AC}}{{BC}}\)
\(\tan \alpha = \dfrac{{cạnh\, đối}}{{cạnh\,kề}} = \dfrac{{AB}}{{AC}};\)\(\cot \alpha = \dfrac{{cạnh\,kề}}{{cạnh\,đối}} = \dfrac{{AC}}{{AB}}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & \tan B = {{AC} \over {AB}} = {3 \over 4} \Rightarrow {{AC} \over 3} = {{AB} \over 4} \cr & \Rightarrow {{A{C^2}} \over 9} = {{A{B^2}} \over {16}} = {{A{C^2} + A{B^2}} \over {9 + 16}}\cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {{B{C^2}} \over {25}} \cr & \Rightarrow {{A{C^2}} \over {B{C^2}}} = {9 \over {25}}\,\text{ và }\,{{A{B^2}} \over {B{C^2}}} = {{16} \over {25}} \cr} \)
Theo định nghĩa :
\(\eqalign{ & \sin B = {{AC} \over {BC}} \cr&\Rightarrow {\sin ^2}B = {{A{C^2}} \over {B{C^2}}} = {9 \over {25}} \cr & \Rightarrow \sin B = {3 \over 5}. \cr} \)
Do đó: \(\cos C = {3 \over 5}\)
Tương tự:
\(\eqalign{ & \cos B = {{AB} \over {BC}} \cr& \Rightarrow {\cos ^2}B = {{A{B^2}} \over {B{C^2}}} = {{16} \over {25}} \cr & \Rightarrow \cos B = {4 \over 5}. \cr} \)
Do đó: \(\sin C = {4 \over 5}\)
Vì \(\tan B = {3 \over 4} \Rightarrow \cot C = {3 \over 4} \Rightarrow \tan C = {4 \over 3}\)
Tải 20 đề kiểm tra giữa kì 2 Tiếng Anh 9 mới
QUYỂN 3. TRỒNG CÂY ĂN QUẢ
Đề thi vào 10 môn Toán Phú Thọ
Đề thi vào 10 môn Toán Bắc Giang
Bài 23. Vùng Bắc Trung Bộ