PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 2 - Hình học 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2

Đề bài

Đề bài

Bài 1. Cho đường tròn đường kính AB. Kẻ dây CD vuông góc với AB tại điểm I bất kì trên AB. Nối I với trung điểm M của AD. Chứng minh MI vuông góc với BC.

Bài 2. Cho đường tròn (O) đường kính AB. Điểm C nằm giữa A và O. Vẽ đường tròn (O’) có đường kính là CB.

a. Hai đường tròn (O) và (O’) có vị trí tương đối như thế nào ?

b. Kẻ dây DE vuông góc với AC tại trung điểm H của AC. Chứng minh rằng tứ giác ADCE là hình thoi.

c. Gọi K là giao điểm của BD với đường tròn (O’). Chứng minh rằng ba điểm E, C, K thẳng hàng.

d. Chứng minh rằng HK là tiếp tuyến của đường tròn (O’)

LG bài 1

LG bài 1

Phương pháp giải:

Sử dụng:

-Định lý đường kính và dây cung

-Đường trung bình của tam giác

Lời giải chi tiết:

Ta có: \(CD ⊥ AB\) tại I \(⇒ IC = ID\) (định lí đường kính dây cung).

Lại có M là trung điểm của AD (gt) nên IM là đường trung bình của ∆ACD

\(⇒ IM // AC\) (1)

Mà \(\widehat {ACB} = 90^\circ \) (AB là đường kính)

hay \(AC ⊥ BC\) (2)       

Từ (1) và (2) ta có: \(MI ⊥ BC\)

 

LG bài 2

LG bài 2

Phương pháp giải:

Sử dụng:

-Vị trí tương đối của 2 đường tròn

-Định lý đường kính và dây cung

-Hai đường thẳng có 1 điểm chung và cùng vuông góc với 1 đường thẳng thứ 3 thì trùng nhau

Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền

Lời giải chi tiết:

a.  Ta có: \(OO’ = OB – O’B\) (\(d = R – R’\)) \(⇒ (O)\) và \((O’)\) tiếp xúc trong tại B.

b. Ta có: \(DE ⊥ AC\) tại trung điểm H

\(⇒ HD = HE\) (định lí đường kính dây cung)

Do đó tứ giác ADCE là hình thoi.

c. Ta có: \(\widehat {ADB} = 90^\circ \) (AB là đường kính)

hay \(AD ⊥ BD\), mà EC // AD

\(⇒ EC ⊥ BD\) (1)

Lại có \(\widehat {CKB} = 90^\circ \) (CB là đường kính)

hay \(CK ⊥ BD\) (2)

Từ (1) và (2) \(⇒ EC\) và \(KC\) phải trùng nhau.

Vậy ba điểm E, C, K thẳng hàng.

d. Ta có: \(∆BO’K\) cân tại O’ (\(O’B = O’K = R’\)) \( \Rightarrow {\widehat B_1} = {\widehat K_1}\,\left( 3 \right)\)

\(∆EKD\) vuông có HK là đường trung tuyến nên \(HK = HE = {1 \over 2}ED\)

\(⇒ ∆EHK\) cân \( \Rightarrow {\widehat E_1} = {\widehat K_3}\,\left( 4 \right),\,ma\,{\widehat E_1} = {\widehat B_1}\,\left( 5 \right)\) (cùng phụ với \(\widehat {EDB}\) )

Từ (3), (4) và (5) \( \Rightarrow {\widehat K_1} = {\widehat K_3},\) mà \({\widehat K_2} + {\widehat K_1} = 90^\circ  \Rightarrow {\widehat K_3} + {\widehat K_2} = 90^\circ \)

hay \(HK ⊥ O’K\). Chứng tỏ HK là tiếp tuyến của (O’)

 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved