PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 2 - Hình học 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG ý a,b
LG ý c,d
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG ý a,b
LG ý c,d

Đề bài

Đề bài

Cho đường tròn (O; R), lấy điểm A ở ngoài đường tròn (O) sao cho \(OA = 2R\). Từ A vẽ hai tiếp tuyến AB, AC đến đường tròn (O) với B, C là hai tiếp điểm.

a. Chứng minh rằng AO là đường trung trực của đoạn BC. Tính AB theo R.

b. Gọi I là trung điểm của đoạn OB, K là giao điểm của đoạn OA với đường tròn (O). Tính diện tích ∆OIK theo R.

c. Đường thẳng AI cắt cung lớn BC tại M. Tiếp tuyến tại M của đường tròn (O) cắt các đường thẳng AB, AC lần lượt tại P và Q. Chứng minh: \(MP = p – AQ\) (với p là nửa chu vi ∆APQ)

d. Chứng minh rằng diện tích ∆APQ bằng nửa chu vi của ∆APQ nhân với R.

LG ý a,b

LG ý a,b

Phương pháp giải:

Sử dụng:

-Tính chất hai tiếp tuyến cắt nhau

-Định lý Py-ta-go

-Tính chất đường trung bình của tam giác

Lời giải chi tiết:

a. Ta có: \(AB = AC\) (tính chất hai tiếp tuyến cắt nhau)

\(OB = OC (= R).\)

Do đó AO là đường trung trực của đoạn BC.

Ta có: \(AB ⊥ OB\) (tính chất tiếp tuyến)

\(⇒ ∆ABO\) vuông tại B, theo định lí Pi-ta-go, ta có:

\(AB = \sqrt {A{O^2} - B{O^2}}  = \sqrt {{{\left( {2R} \right)}^2} - {R^2}}  \)\(\,= R\sqrt 3 \)

b. Ta có: IK là đường trung bình của ∆AOB nên:

\(IK = {1 \over 2}AB = {{R\sqrt 3 } \over 2}\) và IK // AB, mà \(AB ⊥ OB ⇒ IK ⊥ OB.\)

Ta có: \({S_{OIK}} = {1 \over 2}IK.IO = {1 \over 2}.{{R\sqrt 3 } \over 2}.{R \over 2} = {{{R^2}\sqrt 3 } \over 8}\) (đvdt)

 

LG ý c,d

LG ý c,d

Phương pháp giải:

-Công thức tính chu vi và diện tích tam giác

Lời giải chi tiết:

c. Ta có:

\(\eqalign{  p - AQ &= {{AP + PQ + AQ} \over 2} - AQ\cr& = {{AP + PQ + AQ - 2AQ} \over 2}  \cr  &  = {{AP + PQ - AQ} \over 2} \cr&= {{AB + BP + PM + MQ - CQ - AC} \over 2}  \cr  &  = {{BP + PM} \over 2} = {{2PM} \over 2} \cr&= PM\,\left( {đpcm} \right) \cr} \)

d. Ta có:

\(\eqalign{  & {S_{APQ}} = {S_{AOQ}} + {S_{QOP}} + {S_{POA}}  \cr  &  = {1 \over 2}R.AQ + {1 \over 2}R.QP + {1 \over 2}R.AP \cr&= {1 \over 2}R\left( {AQ + QP + AP} \right) \cr} \)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved