PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Đề kiểm tra 45 phút (1 tiết) - Đề số 9 - Chương 2 - Hình học 9

Đề bài

Cho đường tròn (O; R) đường kính AB. Gọi S là trung điểm của OA. Vẽ đường tròn tâm S đi qua A.

a. Chứng minh (O) và (S) tiếp xúc tại A.

b. Một đường thẳng đi qua A cắt (S) tại M và cắt (O) tại N (M, N khác A). Chứng minh : SM // ON

c. Chứng minh : OM // BN

d. Gọi I là trung điểm của ON, đường thẳng AI cắt BN tại K. Chứng minh: \(BK = 2NK\).

Phương pháp giải - Xem chi tiết

a. So sánh hiệu hai bán kính và đường nối tâm

b. Chỉ ra 1 cặp góc đồng vị bằng nhau

c.Chứng minh chúng cùng vuông góc với AN

d.Dựa vào tính chất đường trung bình của tam giác OEN và AKB

Lời giải chi tiết

 

a. Ta có: \(OS = OA – SA (d = R – R’)\)

Vậy (O) và (S) tiếp xúc trong tại A.

b. ∆ASM cân (\(SA = SM = R’\))

\( \Rightarrow {\widehat M_1} = \widehat {MAS}\)

Tương tự ∆AON cân

\(\eqalign{  &  \Rightarrow {\widehat N_1} = \widehat {MAS}  \cr  &  \Rightarrow {\widehat M_1} = {\widehat N_1} \cr} \)

Do đó SM // ON (đồng vị ).

c. Dễ thấy \(\widehat {AMO} = \widehat {ANB} = 90^\circ \) (góc chắn nửa đường tròn)

\(⇒ OM // BN (⊥ AN)\)

d. Kẻ OE // IK, ta có IK là đường trung bình của ∆ONE \(⇒ K\) là trung điểm của NE hay \(KN = KE.\)

Mặt khác trong ∆AKB ta có: OE là đường trung bình nên E là trung điểm của KB hay \(EK = EB\). Vậy \(BK = 2NK.\)

Cách khác : Gọi H là giao điểm của MO và AK, ta có: \(∆OIH = ∆NIK\) (g.c.g)

\(⇒ NK = OH\). Có O là trung điểm của AB, OH // BN (cmt)

\(⇒\) OH là đường trung bình của ∆AKB

\( \Rightarrow OH = {1 \over 2}KB\) hay \(2OH = BK\), mà \(OH = NK ⇒ 2NK = BK.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved