PHẦN GIẢI TÍCH - TOÁN 12

Đồ thị của hàm số và phép tịnh tiến hệ tọa độ

 

 

1. Các kiến thức cần nhớ

Công thức tịnh tiến hệ tọa độ:

Cho điểm \(I\left( {{x_0};{y_0}} \right),M\left( {x;y} \right)\) đối với hệ tọa độ \(Oxy\)

Công thức chuyển hệ tọa độ trong phép tịnh tiến theo véc tơ \(\overrightarrow {OI} \) là: \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)

Khi đó điểm \(I\left( {0;0} \right),M\left( {X,Y} \right)\) đối với hệ tọa độ \(IXY\)

Phương trình đường cong trong hệ tọa độ mới:

Cho đường cong \(\left( C \right):y = f\left( x \right)\) trong hệ tọa độ \(Oxy\), khi đó phương trình của \(\left( C \right)\) trong hệ tọa độ \(IXY\) là:

\(Y = f\left( {X + {x_0}} \right) - {y_0}\)

Tâm đối xứng của đồ thị hàm số:

Nếu hàm số \(Y = g\left( X \right)\) là hàm số lẻ (trong hệ tọa độ mới \(IXY\)) thì điểm \(I\left( {{x_0};{y_0}} \right)\) trong hệ tọa độ \(Oxy\) là tâm đối xứng của đồ thị hàm số \(y = f\left( x \right)\)

2. Một số dạng toán thường gặp

Dạng 1: Tìm công thức chuyển hệ tọa độ.

Phương pháp:

- Bước 1: Tính tọa độ điểm \(I\) (nếu cần).

- Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)

Dạng 2: Viết phương trình đường cong sau khi chuyển hệ tọa độ.

Phương pháp:

- Bước 1: Tìm tọa độ điểm \(I\) (nếu cần)

- Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)

- Bước 3: Viết phương trình đường cong đối với hệ tọa độ mới: \(Y = f\left( {X + {x_0}} \right) - {y_0}\)

Dạng 3: Tìm tâm đối xứng của đồ thị hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\)

Phương pháp:

- Bước 1: Tìm tọa độ điểm \(I\): \(\left\{ \begin{array}{l}{x_0} =  - \dfrac{d}{c}\\{y_0} = \dfrac{a}{c}\end{array} \right.\)

- Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)

- Bước 3: Viết phương trình đường cong đối hệ tọa độ mới: \(Y = f\left( {X + {x_0}} \right) - {y_0}\).

- Bước 4: Chứng minh \(g\left( { - X} \right) =  - g\left( X \right) =  - Y\) suy ra hàm số \(Y = g\left( X \right)\) là hàm số lẻ và kết luận.

Dạng 4: Tìm tâm đối xứng của đồ thị hàm số bậc ba. 

Phương pháp:

- Bước 1: Tính \(y',y''\), giải phương trình \(y'' = 0\) tìm nghiệm \({x_0} \Rightarrow \) điểm \(I\left( {{x_0};{y_0}} \right)\)

- Bước 2: Viết công thức chuyển hệ tọa độ \(\left\{ \begin{array}{l}x = X + {x_0}\\y = Y + {y_0}\end{array} \right.\)

- Bước 3: Viết phương trình đường cong đối hệ tọa độ mới: \(Y = f\left( {X + {x_0}} \right) - {y_0}\).

- Bước 4: Chứng minh \(g\left( { - X} \right) =  - g\left( X \right) =  - Y\) suy ra hàm số \(Y = g\left( X \right)\) là hàm số lẻ và kết luận.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved