Đơn thức một biến ( gọi tắt là đơn thức) là biểu thức đại số có dạng tích của một số thực với một lũy thừa của biến.
Trong đó: số thực gọi là hệ số; số mũ của lũy thừa của biến gọi là bậc của đơn thức
Ví dụ: \( - 3;2x; - \dfrac{2}{5}{x^2};....\) là các đơn thức một biến.
Đơn thức \(\dfrac{{ - 2}}{5}{x^2}\) có hệ số là \(\dfrac{{ - 2}}{5}\) và số mũ của x là 2 nên đơn thức có bậc là 2.
Chú ý: 0 cũng là đơn thức. Đơn thức 0 không có bậc.
Số thực khác 0 là đơn thức có bậc là 0.
Với các đơn thức một biến, ta có thể :
+ Cộng, trừ hai đơn thức cùng bậc bằng cách cộng, trừ các hệ số với nhau và giữ nguyên lũy thừa của biến. Tổng, hiệu nhận được cũng là đơn thức.
Ví dụ: \(2{x^3} - 5{x^3} = \left( {2 - 5} \right){x^3} = - 3{x^3}\)
+ Nhân hai đơn thức tùy ý bằng cách nhân các hệ số với nhau, nhân hai lũy thừa với nhau. Tích nhận được cũng là đơn thức.
Ví dụ: \(\left( { - {x^2}} \right).\left( { - 4{x^3}} \right) = \left[ {\left( { - 1} \right).\left( { - 4} \right)} \right].\left( {{x^2}.{x^3}} \right) = 4{x^{2 + 3}} = 4{x^5}\)
Phần 1. Chất và sự biến đổi của chất
Chủ đề chung 2. Đô thị: lịch sử và hiện tại
Đề thi học kì 1
Đề thi học kì 2
Chủ đề 3. Đạo đức, pháp luật và văn hóa trong môi trường số
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7