a) Phép chia hết:
Cho hai đa thức A và B với \(B \ne 0\). Nếu có một đa thức Q sao cho A = B . Q thì ta có phép chia hết:
\(A:B = Q\) hay \(\dfrac{A}{B} = Q\), trong đó:
A là đa thức bị chia
B là đa thức chia
Q là đa thức thương (gọi tắt là thương).
Ta nói, đa thức A chia hết cho đa thức B.
Ví dụ: Đa thức A = -2x3 chia hết cho đa thức B = 3x2 vì ta thấy -2x3 = 3x2 .\(\dfrac{{ - 2}}{3}x\).
Ta có thể viết: \( - 2{x^3}:(3{x^2}) = \dfrac{{ - 2}}{3}x\) hay \(\dfrac{{ - 2{x^3}}}{{3{x^2}}} = \dfrac{{ - 2}}{3}x\).
b) Quy tắc chia đơn thức cho đơn thức:
Cho hai đơn thức \(a{x^m}\) và \(b{x^n}(m,n \in N;a,b \in R;b \ne 0)\). Khi đó nếu \(m \ge n\) thì phép chia \(a{x^m}\) cho \(b{x^n}\) là phép chia hết và \(a{x^m}:b{x^n} = \dfrac{a}{b}.{x^{m - n}}\).
Quy ước: \({x^0} = 1.\)
Chương VII: Trao đổi chất và chuyển hóa năng lượng sinh vật
Bài 1: Bầu trời tuổi thơ
Bài 1: Tiểu thuyết và truyện ngắn
Chương 6: Biểu thức đại số
Bài 1
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7