SBT Toán 11 - Chân trời sáng tạo tập 1

Câu hỏi 1 - Mục Bài tập trang 112

1. Nội dung câu hỏi

Cho hình chóp S. ABCD có ABCD là hình thang đáy lớn AD. Gọi E, F lần lượt là hai điểm trên hai cạnh SB, SD.

a) Tìm giao điểm EF với (SAC).

b) Tìm giao điểm BC với (AEF).


2. Phương pháp giải

Sử dụng kiến thức về giao điểm giữa đường thẳng và mặt phẳng để tìm: Cách tìm giao điểm của đường thẳng d và mặt phẳng \(\left( \alpha  \right)\):

- Trường hợp 1: Trong mặt phẳng \(\left( \alpha  \right)\) có sẵn đường thẳng d’ cắt d tại I: Ta có ngay \(d \cap \left( \alpha  \right) = I\)

- Trường hợp 2: Trong mặt phẳng \(\left( \alpha  \right)\) không có sẵn đường thẳng d’ cắt d. Khi đó ta thực hiện như sau:

+ Chọn mặt phẳng phụ \(\left( \beta  \right)\) chứa d và \(\left( \beta  \right)\) cắt \(\left( \alpha  \right)\) theo giao tuyến d’.

+ Gọi \(I = d' \cap d\). Khi đó, \(d \cap \left( \alpha  \right) = I\).

 

3. Lời giải chi tiết 

a) Trong mặt phẳng (ABCD), gọi O là giao điểm của AC và BD. Do đó, SO là giao tuyến của mặt phẳng (SAC) và (SBD).

Trong mặt phẳng (SBD), gọi I là giao điểm của EF và SO.

Vì I thuộc EF, \(I \in SO \subset \left( {SAC} \right)\) nên I là giao điểm của EF và (SAC).

b) Trong mặt phẳng (SBD), gọi K là giao điểm của EF và BD. Khi đó, AK là giao tuyến của (ABCD) và (AEF).

Trong mặt phẳng (ABCD), gọi H là giao điểm của BC và AK.

Vì H thuộc BC, \(H \in AK \subset \left( {AEF} \right)\) nên H là giao điểm của BC và (AEF).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved