SBT Toán 11 - Chân trời sáng tạo tập 1

Câu hỏi 1 - Mục Bài tập trang 117

1. Nội dung câu hỏi

Cho hình chóp S. ABCD có đáy ABCD là hình thang, đáy lớn AD. Gọi I và J lần lượt trọng tâm của tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD tại P, Q.

a) Chứng minh MN song song với PQ.

b) Gọi E là giao điểm của AM và BP, F là giao điểm của CQ và DN. Chứng minh EF song song với MN và PQ.


2. Phương pháp giải

Sử dụng kiến thức về tính chất cơ bản về hai đường thẳng song song để chứng minh:

+ Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

+ Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau.

 

3. Lời giải chi tiết 

a) Ta có: AD//BC (do ABCD là hình thang đáy lớn AD).

Mà \(AD \subset \left( {ADJ} \right),BC \subset \left( {SBC} \right),\left( {ADJ} \right) \cap \left( {SBC} \right) = MN\)

Do đó, MN//AD//BC

Chứng minh tương tự ta có: PQ//AD//BC

Suy ra: MN//PQ

b) Ta có: AD//BC (do ABCD là hình thang đáy lớn AD).

Mà \(AD \subset \left( {ADJ} \right),BC \subset \left( {IBC} \right),\left( {ADJ} \right) \cap \left( {IBC} \right) = EF\) nên EF//AD//BC

Mà MN//PQ// AD//BC (theo câu a)

Do đó, MN//EF//QP.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved