SBT Toán 11 - Chân trời sáng tạo tập 1

Câu hỏi 1 - Mục Bài tập trang 133

1. Nội dung câu hỏi

Cho hình bình hành ABCD. Từ các đỉnh A, B, C và D lần lượt kẻ các tia Ax, By, Cz, Dt song song với nhau và không nằm trong mặt phẳng (ABCD). Chứng minh mặt phẳng (Ax, By) song song với mặt phẳng (Cz, Dt).


2. Phương pháp giải

Sử dụng kiến thức về điều kiện để hai mặt phẳng song song để chứng minh: Nếu mặt phẳng (P) chứa hai đường thẳng a, b cắt nhau và hai đường thẳng đó cùng song song với mặt phẳng (Q) thì (P) song song với (Q).

 

3. Lời giải chi tiết 

Vì Cz//By, \(By \subset \left( {Ax,By} \right)\), Cz không nằm trong mặt phẳng (Ax, By) nên Cz// (Ax, By).

Vì tứ giác ABCD là hình bình hành nên AB//CD. Mà \(AB \subset \left( {Ax,By} \right)\), CD không nằm trong mặt phẳng (Ax, By) nên CD// (Ax, By).

Vì Cz// (Ax, By), CD// (Ax, By), Cz và CD cắt nhau tại C và nằm trong mặt phẳng (Cz, Dt) nên (Cz, Dt) // (Ax, By).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved