1. Nội dung câu hỏi
Tính các giá trị lượng giác của góc \(\alpha \), nếu:
a) \(\sin \alpha = - \frac{4}{5}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\);
b) \(\cos \alpha = \frac{{11}}{{61}}\) và \(0 < \alpha < \frac{\pi }{2}\);
c) \(\tan \alpha = - \frac{{15}}{8}\) và \( - {90^0} < \alpha < {90^0}\);
d) \(\cot \alpha = - 2,4\) và \( - {180^0} < \alpha < {0^0}\).
2. Phương pháp giải
Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc để tính:
a, b) \({\sin ^2}\alpha + {\cos ^2}\alpha \) \( = 1\), \(\tan \alpha \) \( = \frac{{\sin \alpha }}{{\cos \alpha }}\), \(\cot \alpha \) \( = \frac{1}{{\tan \alpha }}\)
c) \(\frac{1}{{{{\cos }^2}\alpha }} \) \( = 1 + {\tan ^2}\alpha \), \(\sin \alpha \) \( = \tan \alpha .\cos \alpha \), \(\cot \alpha \) \( = \frac{1}{{\tan \alpha }}\)
d) \(\frac{1}{{{{\sin }^2}\alpha }} \) \( = 1 + {\cot ^2}\alpha \), \(\cos \alpha \) \( = \cot \alpha .\sin \alpha \),\(\tan \alpha \) \( = \frac{1}{{\cot \alpha }}\)
3. Lời giải chi tiết
a) Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha \) \( = 1 \Rightarrow \cos \alpha \) \( = \pm \sqrt {1 - {{\sin }^2}\alpha } \) \( = \pm \sqrt {1 - {{\left( {\frac{{ - 4}}{5}} \right)}^2}} \) \( = \pm \frac{3}{5}\)
Mà \(\pi < \alpha < \frac{{3\pi }}{2}\) nên \(\cos \alpha < 0\).
Do đó, \(\cos \alpha \) \( = - \frac{3}{5}\), \(\tan \alpha \) \( = \frac{{\sin \alpha }}{{\cos \alpha }} \) \( = \frac{{\frac{{ - 4}}{5}}}{{\frac{{ - 3}}{5}}} \) \( = \frac{4}{3},\cot \alpha \) \( = \frac{1}{{\tan \alpha }} \) \( = \frac{3}{4}\)
b) Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha \) \( = 1 \Rightarrow \sin \alpha \) \( = \pm \sqrt {1 - {{\cos }^2}\alpha } \) \( = \pm \sqrt {1 - {{\left( {\frac{{11}}{{61}}} \right)}^2}} \) \( = \pm \frac{{60}}{{61}}\)
Mà \(0 < \alpha < \frac{\pi }{2}\) nên \(\sin \alpha > 0\).
Do đó, \(\sin \alpha \) \( = \frac{{60}}{{61}}\), \(\tan \alpha \) \( = \frac{{\sin \alpha }}{{\cos \alpha }} \) \( = \frac{{\frac{{60}}{{61}}}}{{\frac{{11}}{{61}}}} \) \( = \frac{{60}}{{11}},\cot \alpha \) \( = \frac{1}{{\tan \alpha }} \) \( = \frac{{11}}{{60}}\)
c) Ta có: \(\frac{1}{{{{\cos }^2}\alpha }} \) \( = 1 + {\tan ^2}\alpha \) \( = 1 + {\left( {\frac{{ - 15}}{8}} \right)^2} \) \( = \frac{{289}}{{64}} \Rightarrow \frac{1}{{\cos \alpha }} \) \( = \pm \frac{{17}}{8}\)
Mà \( - {90^0} < \alpha < {90^0}\) nên \(\cos \alpha > 0,\sin \alpha < 0\).
Do đó, \(\cos \alpha \) \( = \frac{8}{{17}},\cot \alpha \) \( = \frac{1}{{\tan \alpha }} \) \( = \frac{{ - 8}}{{15}},\sin \alpha \) \( = \tan \alpha .\cos \alpha \) \( = \frac{{ - 15}}{{17}}\).
d) Ta có: \(\frac{1}{{{{\sin }^2}\alpha }} \) \( = 1 + {\cot ^2}\alpha \) \( = 1 + {\left( { - 2,4} \right)^2} \) \( = \frac{{169}}{{25}} \Rightarrow \frac{1}{{\sin \alpha }} \) \( = \pm \frac{{13}}{5}\)
Mà \( - {180^0} < \alpha < {0^0}\) nên \(\cos \alpha > 0,\sin \alpha < 0\).
Do đó, \(\sin \alpha \) \( = - \frac{5}{{13}},\tan \alpha \) \( = \frac{1}{{\cot \alpha }} \) \( = \frac{{ - 5}}{{12}},\cos \alpha \) \( = \cot \alpha .\sin \alpha \) \( = \frac{{12}}{{13}}\).
Unit 1: Generations
CHUYÊN ĐỀ 1. LỊCH SỬ NGHỆ THUẬT TRUYỀN THỐNG VIỆT NAM
Chủ đề 8: Một số quyền dân chủ cơ bản của công dân
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Giáo dục kinh tế và pháp luật lớp 11
Bài 3. Phòng chống tệ nạn xã hội ở VN trong thời kì hội nhập quốc tế
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11