1. Nội dung câu hỏi
Một trang báo điện tử thống kê thời gian người sử dụng đọc thông tin trên trang trong mỗi lần truy cập ở bảng sau:
Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.
2. Phương pháp giải
+ Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:
Gọi n là cỡ mẫu.
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,
\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).
+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:
Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.
Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)
Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)
Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)
3. Lời giải chi tiết
Cỡ mẫu \(n = 125\)
Gọi \({x_1},{x_2},...,{x_{125}}\) là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có: \({x_1},...,{x_{45}} \in \left[ {0;2} \right),{x_{46}},...,{x_{79}} \in \left[ {2;4} \right),{x_{80}},...,{x_{102}} \in \left[ {4,6} \right),{x_{103}},...,{x_{120}} \in \left[ {6;8} \right),\)
\({x_{121}},...,{x_{125}} \in \left[ {8;10} \right)\)
Do cỡ mẫu \(n = 125\) nên tứ phân vị thứ hai của mẫu số liệu là \({x_{63}}\). Do đó tứ phân vị thứ hai của mẫu số liệu thuộc nhóm \(\left[ {2;4} \right)\).
Tứ phân vị thứ hai của mẫu số liệu ghép nhóm là: \({Q_2} = 2 + \frac{{\frac{{125}}{2} - 45}}{{34}}.\left( {4 - 2} \right) = \frac{{103}}{{34}}\)
Do cỡ mẫu \(n = 125\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{31}} + {x_{32}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {0;2} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 0 + \frac{{\frac{{125}}{4} - \left( {0 + 0} \right)}}{{45}}.\left( {2 - 0} \right) = \frac{{25}}{{18}}\)
Do cỡ mẫu \(n = 125\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{1}{2}\left( {{x_{94}} + {x_{95}}} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {4;6} \right)\).
Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 4 + \frac{{\frac{{3.125}}{4} - \left( {34 + 45} \right)}}{{23}}.\left( {6 - 4} \right) = \frac{{243}}{{46}}\)
Chuyên đề 3: Một số vấn đề về pháp luật lao động
Chuyên đề 1. Một số vấn đề về khu vực Đông Nam Á
Unit 9: The Post Office - Bưu điện
Bài 4. Thực hành: Tìm hiểu những cơ hội và thách thức của toàn cầu hóa đối với các nước đang phát triển - Tập bản đồ Địa lí 11
Chuyên đề 1: Phát triển kinh tế và sự biến đổi môi trường tự nhiên
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11