Bài 1. Định lí Ta-lét trong tam giác
Bài 2. Định lí đảo và hệ quả của định lí Ta-lét
Bài 3. Tính chất đường phân giác của tam giác
Bài 4. Khái niệm hai tam giác đồng dạng
Bài 5. Trường hợp đồng dạng thứ nhất (c.c.c)
Bài 6. Trường hợp đồng dạng thứ hai (c.g.c)
Bài 7. Trường hợp đồng dạng thứ ba (g.g)
Bài 8. Các trường hợp đồng dạng của tam giác vuông
Ôn tập chương III. Tam giác đồng dạng
Bài 1. Hình hộp chữ nhật
Bài 2. Hình hộp chữ nhật (tiếp)
Bài 3. Thể tích của hình hộp chữ nhật
Bài 4. Hình lăng trụ đứng
Bài 5. Diện tích xung quanh của hình lăng trụ đứng
Bài 6. Thể tích của hình lăng trụ đứng
Bài 7. Hình chóp đều và hình chóp cụt đều
Bài 8. Diện tích xung quanh của hình chóp đều
Bài 9. Thể tích của hình chóp đều
Ôn tập chương IV. Hình lăng trụ đứng. Hình chóp đều
Đề bài
Cho hình bình hành \(ABCD.\) \(O\) là giao điểm của hai đường chéo. Trên các cạnh \(AB, BC, CD, DA\) ta lần lượt lấy các điểm \(E, F, G, H\) sao cho \(AE = CG, BF = DH.\)
a) Xác định tâm đối xứng của hình bình hành \(ABCD.\)
b) Chứng minh \(EFGH\) là hình bình hành, tìm tâm đối xứng của nó.
c) \(O\) còn là tâm đối xứng của những hình bình hành nào?
Phương pháp giải - Xem chi tiết
Sử dụng:
- Hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng.
- Tứ giác có cặp cạnh đối song song và bằng nhau là hình bình hành.
- Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
Lời giải chi tiết
a) Tâm đối xứng của hình bình hành \(ABCD\) là giao điểm \(O\) của hai đường chéo \(AC\) và \(BD.\)
b) \(ABCD\) là hình bình hành nên \(AB//DC;AD//BC\)
Do đó \(AE//CG;DH//BF\).
Tứ giác \(AECG\) có \(AE//CG, AE = CG\) nên \(AECG\) là hình bình hành.
\(⇒ O\) là trung điểm của \(EG.\)
Tứ giác \(BFDH\) có \(BF//DH;BF=DH\) nên \(BFDH\) là hình bình hành.
\(⇒ O\) là trung điểm của \(HF.\)
Tứ giác \(EFGH\) có hai đường chéo \(EG\) và \(HF\) cắt nhau tại trung điểm \(O\) của mỗi đường nên \(EFGH\) là hình bình hành.
Vậy \(O\) là tâm đối xứng của hình bình hành \(EFGH\).
c) Tứ giác \(EBGD\) có hai đường chéo \(BD\) và \(EG\) cắt nhau tại trung điểm \(O\) của mỗi đường nên \(EBGD\) là hình bình hành.
Tứ giác \(AHCF\) có hai đường chéo \(AC\) và \(HF\) cắt nhau tại trung điểm \(O\) của mỗi đường nên \(AHCF\) là hình bình hành.
Vậy \(O\) còn là tâm đối xứng của các hình bình hành: \(AECG, EBGD, AHCF, BFDH.\)
ĐỀ KIỂM TRA HỌC KÌ 2 (ĐỀ THI HỌC KÌ 2) - VẬT LÍ 8
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 2
SGK Toán 8 - Cánh Diều tập 1
Bài 5: Bảo vệ môi trường và tài nguyên thiên nhiên
CHƯƠNG 1: CƠ HỌC
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8