1. Nội dung câu hỏi
Tính đạo hàm của các hàm số sau:
a) \(y = \frac{{ - 3{x^2}}}{2} + \frac{2}{x} + \frac{{{x^3}}}{3}\);
b) \(y = \left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} + 9} \right)\);
c) \(y = \frac{{{x^2} - 2x}}{{{x^2} + x + 1}};\)
d) \(y = \frac{{1 - 2x}}{{x + 1}}\);
e) \(y = x.{e^{2x + 1}}\);
g) \(y = \left( {2x + 3} \right){.3^{2x + 1}}\);
h) \(y = x{\ln ^2}x\);
i) \(y = {\log _2}\left( {{x^2} + 1} \right)\).
2. Phương pháp giải
Sử dụng kiến thức về các quy tắc tính đạo hàm để tính:
a) \(\left( {u + v + {\rm{w}}} \right)' = u' + v' + {\rm{w}}',\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha - 1}}\left( {x > 0} \right)\)
b) \(\left( {u \pm v} \right)' = u' \pm v',\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha - 1}}\left( {x > 0} \right),c' = 0\) với c là hằng số.
c, d) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\) , \(\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha - 1}}\left( {x > 0} \right)\)
e) \(\left( {uv} \right)' = u'v + uv',\left( {{e^{u\left( x \right)}}} \right)' = \left( {u\left( x \right)} \right)'{e^{u\left( x \right)}}\)
g) \(\left( {uv} \right)' = u'v + uv',\left( {{a^{u\left( x \right)}}} \right)' = \left( {u\left( x \right)} \right)'{a^{u\left( x \right)}}\ln a\left( {a > 0,a \ne 1} \right)\)
h) \(\left( {uv} \right)' = u'v + uv',\left( {\ln x} \right)' = \frac{1}{x}\left( {x > 0} \right),\left\{ {{{\left[ {u\left( x \right)} \right]}^\alpha }} \right\}' = \alpha {\left[ {u\left( x \right)} \right]^{\alpha - 1}}\left[ {u\left( x \right)} \right]'\)
i) \(\left( {{{\log }_a}u\left( x \right)} \right)' = \frac{{u'\left( x \right)}}{{u\left( x \right)\ln a}}\left( {u\left( x \right) > 0,a > 0,a \ne 1} \right)\).
3. Lời giải chi tiết
a) \(y' = {\left( {\frac{{ - 3{x^2}}}{2} + \frac{2}{x} + \frac{{{x^3}}}{3}} \right)'} = \frac{{ - 3.2x}}{2} - \frac{2}{{{x^2}}} + \frac{{3.{x^2}}}{3} = - 3x - \frac{2}{{{x^2}}} + {x^2}\);
b) Ta có: \(y = \left( {{x^2} - 1} \right)\left( {{x^2} - 4} \right)\left( {{x^2} + 9} \right) = \left( {{x^4} - 5{x^2} + 4} \right)\left( {{x^2} + 9} \right)\)
\( = {x^6} - 5{x^4} + 4{x^2} + 9{x^4} - 45{x^2} + 36 = {x^6} + 4{x^4} - 41{x^2} + 36\)
Do đó, \(y' = \left( {{x^6} + 4{x^4} - 41{x^2} + 36} \right)' = 6{x^5} + 16{x^3} - 82x\)
c) \(y' = {\left( {\frac{{{x^2} - 2x}}{{{x^2} + x + 1}}} \right)'} = \frac{{\left( {{x^2} - 2x} \right)'\left( {{x^2} + x + 1} \right) - \left( {{x^2} - 2x} \right)\left( {{x^2} + x + 1} \right)'}}{{{{\left( {{x^2} + x + 1} \right)}^2}}}\)
\( = \frac{{\left( {2x - 2} \right)\left( {{x^2} + x + 1} \right) - \left( {{x^2} - 2x} \right)\left( {2x + 1} \right)}}{{{{\left( {{x^2} + x + 1} \right)}^2}}}\)
\( = \frac{{2{x^3} + 2{x^2} + 2x - 2{x^2} - 2x - 2 - 2{x^3} - {x^2} + 4{x^2} + 2x}}{{{{\left( {{x^2} + x + 1} \right)}^2}}} = \frac{{3{x^2} + 2x - 2}}{{{{\left( {{x^2} + x + 1} \right)}^2}}}\)
d) \(y' = {\left( {\frac{{1 - 2x}}{{x + 1}}} \right)'} = \frac{{\left( {1 - 2x} \right)'\left( {x + 1} \right) - \left( {1 - 2x} \right)\left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{ - 2\left( {x + 1} \right) - \left( {1 - 2x} \right)}}{{{{\left( {x + 1} \right)}^2}}}\)
\( = \frac{{ - 2x - 2 - 1 + 2x}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{ - 3}}{{{{\left( {x + 1} \right)}^2}}}\)
e) \(y' = \left( {x.{e^{2x + 1}}} \right)' = x'.{e^{2x + 1}} + x.\left( {{e^{2x + 1}}} \right)' = {e^{2x + 1}} + x.2.{e^{2x + 1}} = {e^{2x + 1}}\left( {2x + 1} \right)\);
g) \(y' = \left( {\left( {2x + 3} \right){{.3}^{2x + 1}}} \right)' = \left( {2x + 3} \right)'{.3^{2x + 1}} + \left( {2x + 3} \right).\left( {{3^{2x + 1}}} \right)'\)
\( = {2.3^{2x + 1}} + \left( {2x + 3} \right)\left( {2x + 1} \right)'{.3^{2x + 1}}\ln 3 = {2.3^{2x + 1}} + {2.3^{2x + 1}}\left( {2x + 3} \right)\ln 3\)\( = {2.3^{2x + 1}}\left[ {\left( {2x + 3} \right)\ln 3 + 1} \right]\)
h) \(y' = \left( {x{{\ln }^2}x} \right)' = x'{\ln ^2}x + x.\left( {{{\ln }^2}x} \right)' = {\ln ^2}x + 2x.\ln x.\frac{1}{x} = {\ln ^2}x + 2.\ln x\);
i) \(y' = \left[ {{{\log }_2}\left( {{x^2} + 1} \right)} \right]' = \frac{{\left( {{x^2} + 1} \right)'}}{{\left( {{x^2} + 1} \right)\ln 2}} = \frac{{2x}}{{\left( {{x^2} + 1} \right)\ln 2}}\).
Bài 6. Giới thiệu một số loại súng bộ binh, thuốc nổ, vật cản và vũ khí tự tạo
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Vật lí lớp 11
Chuyên đề 1. Dinh dưỡng khoáng - tăng năng suất cây trồng và nông nghiệp sạch
Unit 10: Cities of the future
Chủ đề 3: Kĩ thuật bỏ nhỏ và chiến thuật phân chia khu vực đánh cầu
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11