PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1

Bài 1 trang 46 Vở bài tập toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

 \( \dfrac{3x(x + 5)}{2(x + 5)}= \dfrac{3x}{2}\) 

Phương pháp giải:

Áp dụng định nghĩa hai phân thức bằng nhau: \( \dfrac{A}{B} = \dfrac{C}{D}\) nếu \(AD = BC\).

Lời giải chi tiết:

Ta coi \( \dfrac{3x(x + 5)}{2(x + 5)}\) là \(\dfrac{A}{B}\); \(\dfrac{3x}{2}\) là \(\dfrac{C}{D}\). Theo định nghĩa hai phân thức bằng nhau ta cần kiểm tra đẳng thức \(AD=BC\); tức là cần kiểm tra đẳng thức: 

\(3x(x+5).2=2(x+5).3x\)

Ta có: \(3x(x+5).2=6x(x+5)\)

           \(2(x+5).3x=6x(x+5)\)

Suy ra: \(3x(x+5).2=2(x+5).3x\)

Vậy \( \dfrac{3x(x + 5)}{2(x + 5)}= \dfrac{3x}{2}.\)

LG b

\( \dfrac{x + 2}{x - 1}= \dfrac{(x + 2)(x + 1)}{x^{2} - 1}\)  

Phương pháp giải:

Áp dụng định nghĩa hai phân thức bằng nhau: \( \dfrac{A}{B} = \dfrac{C}{D}\) nếu \(AD = BC\). 

Lời giải chi tiết:

Tương tự như giải câu a), ta cần kiểm tra đẳng thức:

\((x + 2)(x^2- 1)\)\(=(x - 1) (x + 2)(x + 1)\) 

Ta có: \((x + 2)({x^2} - 1) \)

\(= \left( {x + 2} \right)\left( {x - 1} \right)\left( {x + 1} \right) \)\(= \left( {x - 1} \right)\left( {x + 2} \right)\left( {x + 1} \right)\)

Vậy \( \dfrac{x + 2}{x - 1}= \dfrac{(x + 2)(x + 1)}{x^{2} - 1}\)

LG c

\( \dfrac{x^{2} - x - 2}{x + 1}= \dfrac{x^{2}- 3x + 2}{x - 1}\) 

Phương pháp giải:

Áp dụng định nghĩa hai phân thức bằng nhau: \( \dfrac{A}{B} = \dfrac{C}{D}\) nếu \(AD = BC\).  

Lời giải chi tiết:

Tương tự như giải câu a), ta cần kiểm tra đẳng thức:

\( \left( {{x^2} - x - 2} \right)\left( {x - 1} \right)\)\(= \left( {x + 1} \right)\left( {{x^2} - 3x + 2} \right)\)

Ta có: \(\left( {{x^2} - x - 2} \right)\left( {x - 1} \right) \)\(\,= {x^3} - {x^2} - {x^2} + x - 2x + 2 \)\(\,= {x^3} - 2{x^2} - x + 2\)

\(\left( {x + 1} \right)\left( {{x^2} - 3x + 2} \right) \)\(\,= {x^3} - 3{x^2} + 2x + {x^2} - 3x + 2 \)\(\,= {x^3} - 2{x^2} - x + 2\) 

Suy ra: \( \left( {{x^2} - x - 2} \right)\left( {x - 1} \right)\)\(= \left( {x + 1} \right)\left( {{x^2} - 3x + 2} \right)\)

Vậy \( \dfrac{x^{2} - x - 2}{x + 1}= \dfrac{x^{2}- 3x + 2}{x - 1}\)

LG d

\( \dfrac{x^{3}+ 8 }{x^{2}- 2x + 4}= x + 2\)  

Phương pháp giải:

Áp dụng định nghĩa hai phân thức bằng nhau: \( \dfrac{A}{B} = \dfrac{C}{D}\) nếu \(AD = BC\).  

Lời giải chi tiết:

Vì đa thức \(x+2\) cũng là phân thức \(\dfrac{{x + 2}}{1}\) nên có thể viết đẳng thức đã cho dưới dạng: \(\dfrac{{{x^3} + 8}}{{{x^2} - 2x + 4}} = \dfrac{{x + 2}}{1}\). Giải tương tự như hai câu trên, ta có: 

\((x^3+ 8).1 = x^3+ 8\) 

\(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) = {x^3} + 8\)

Vậy \( \dfrac{x^{3}+ 8 }{x^{2}- 2x + 4}= x + 2\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved