SBT Toán 11 - Chân trời sáng tạo tập 2

Câu hỏi 1 - Mục Bài tập trang 61

1. Nội dung câu hỏi

Cho tứ diện ABCD có tam giác BCD vuông cân tại B và \(AB \bot \left( {BCD} \right)\). Cho biết \(BC = a\sqrt 2 ,AB = \frac{a}{{\sqrt 3 }}\). Xác định và tính góc giữa hai mặt phẳng (ACD) và (BCD).


2. Phương pháp giải

Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Góc giữa hai mặt phẳng cắt nhau bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng. 

 

3. Lời giải chi tiết 

Gọi I là trung điểm của CD.

Tam giác BCD vuông cân tại B nên BI là đường trung tuyến đồng thời là đường cao.

Do đó, \(BI \bot CD\).

Tam giác BCD vuông cân tại B nên \(BC = BD = a\sqrt 2 \)

Vì \(AB \bot \left( {BCD} \right),BD \subset \left( {BCD} \right) \Rightarrow AB \bot BD\). Do đó, tam giác ABD vuông tại B.

Áp dụng định lí Pythagore vào tam giác ABD vuông tại B có:

\(AD = \sqrt {A{B^2} + B{D^2}}  = \sqrt {{{\left( {\frac{a}{{\sqrt 3 }}} \right)}^2} + {{\left( {a\sqrt 2 } \right)}^2}}  = \frac{{a\sqrt {21} }}{3}\)

Vì \(AB \bot \left( {BCD} \right),BC \subset \left( {BCD} \right) \Rightarrow AB \bot BC\). Do đó, tam giác ABC vuông tại B.

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:

\(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{\left( {\frac{a}{{\sqrt 3 }}} \right)}^2} + {{\left( {a\sqrt 2 } \right)}^2}}  = \frac{{a\sqrt {21} }}{3}\)

Do đó, \(AC = AD\) nên tam giác ACD cân tại A.

Nên AI là đường trung tuyến đồng thời là đường cao. Suy ra, \(AI \bot CD\).

Ta có: CD là giao tuyến của hai mặt phẳng (BCD) và (ACD)\(BI \bot CD,AI \bot CD,BI \subset \left( {BCD} \right),AI \subset \left( {ACD} \right)\). Nên \(\left( {\left( {ACD} \right),\left( {BCD} \right)} \right) = \left( {AI,BI} \right) = \widehat {AIB}\)

Áp dụng định lí Pythagore vào tam giác BCD vuông tai B có: \(CD = \sqrt {B{C^2} + B{D^2}}  = 2a\)

Tam giác BCD vuông cân tại B nên \(BI = \frac{{CD}}{2} = a\)

Vì \(AB \bot \left( {BCD} \right),BI \subset \left( {BCD} \right) \Rightarrow AB \bot BI\). Do đó, tam giác ABI vuông tại B.

Do đó, \(\tan \widehat {AIB} = \frac{{AB}}{{BI}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {AIB} = {30^0}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved