SBT Toán 11 - Chân trời sáng tạo tập 2

Câu hỏi 1 - Mục Bài tập trang 68

1. Nội dung câu hỏi

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết \(SA = \frac{{a\sqrt 6 }}{2}\).


2. Phương pháp giải

Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính: Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn thẳng MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M; (P)). 

 

3. Lời giải chi tiết 

Gọi E là trung điểm của BC. Vì tam giác ABC đều nên AE là đường trung tuyến đồng thời là đường cao. Do đó, \(AE \bot BC\)

Ta có: \(SA \bot \left( {ABC} \right),BC \subset \left( {ABC} \right) \Rightarrow SA \bot BC\), mà \(AE \bot BC\).  Suy ra: \(BC \bot \left( {SAE} \right)\)

Kẻ \(AF \bot SE\left( {S \in SE} \right)\). Vì \(BC \bot \left( {SAE} \right)\)\( \Rightarrow BC \bot AF\)

Ta có: \(BC \bot AF,AF \bot SE,\) BC và SE cắt nhau tại E và nằm trong mặt phẳng (SBC) nên \(AF \bot \left( {SBC} \right)\). Khi đó, AF là khoảng cách từ A đến mặt phẳng (SBC).

Vì tam giác ABC đều nên \(\widehat {ABC} = {60^0}\).

Tam giác ABE vuông tại E có: \(AE = AB.\sin \widehat {ABC} = \frac{{a\sqrt 3 }}{2}\)

Vì \(SA \bot \left( {ABC} \right),AE \subset \left( {ABC} \right) \Rightarrow SA \bot AE\)

Tam giác AES vuông tại A, có AF là đường cao nên:

\(\frac{1}{{A{F^2}}} = \frac{1}{{A{E^2}}} + \frac{1}{{S{A^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{6{a^2}}} = \frac{2}{{{a^2}}} \Rightarrow AF = \frac{{a\sqrt 2 }}{2}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved