1. Nội dung câu hỏi
Dùng định nghĩa, xét tính liên tục của hàm số:
a) \(f\left( x \right) = {x^3} - 3x + 2\) tại điểm \(x = - 2\);
b) \(f\left( x \right) = \sqrt {3x + 2} \) tại điểm \(x = 0\).
2. Phương pháp giải
Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để xét tính liên tục của hàm số: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).
3. Lời giải chi tiết
a) Tập xác định của hàm số là \(D = \mathbb{R}\), chứa điểm \( - 2\).
Ta có: \(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \mathop {\lim }\limits_{x \to - 2} \left( {{x^3} - 3x + 2} \right) = {\left( { - 2} \right)^3} - 3\left( { - 2} \right) + 2 = - 8 + 6 + 2 = 0\)
\(f\left( { - 2} \right) = {\left( { - 2} \right)^3} - 3\left( { - 2} \right) + 2 = - 8 + 6 + 2 = 0\)
Vì \(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = f\left( 2 \right)\) nên hàm số \(f\left( x \right) = {x^3} - 3x + 2\) liên tục tại điểm \(x = - 2\).
b) Tập xác định của hàm số là \(D = \left[ {\frac{{ - 2}}{3}; + \infty } \right)\), chứa điểm 0.
Ta có: \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \sqrt {3x + 2} = \sqrt {3.0 + 2} = \sqrt 2 \); \(f\left( 0 \right) = \sqrt {3.0 + 2} = \sqrt 2 \)
Vì \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\) nên hàm số \(f\left( x \right) = \sqrt {3x + 2} \) liên tục tại điểm \(x = 0\).
Bài 10: Tiết 2: Kinh tế Trung Quốc - Tập bản đồ Địa lí 11
Chủ đề 2: Lạm phát, thất nghiệp
Chương 4: Dòng điện không đổi
Chuyên đề 1: Phát triển kinh tế và sự biến đổi môi trường tự nhiên
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Giáo dục kinh tế và pháp luật lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11