1. Nội dung câu hỏi
Cho \(\tan x = - 2\). Tính giá trị của mỗi biểu thức sau:
a) \(A = \frac{{3\sin x - 5\cos x}}{{4\sin x + \cos x}}\)
b) \(B = \frac{{2{{\sin }^2}x - 3\sin x\cos x - {{\cos }^2}x}}{{{{\sin }^2}x + \sin x\cos x}}\)
2. Phương pháp giải
Do \(\tan x\) xác định nên \(\cos x \ne 0\).
Chia cả tử và mẫu của \(A\) cho \(\cos x\), của \(B\) cho \({\cos ^2}x\).
Sử dụng công thức \(\tan x = \frac{{\sin x}}{{\cos x}}\).
3. Lời giải chi tiết
Do \(\tan x\) xác định nên \(\cos x \ne 0\).
a) Chia cả tử và mẫu của \(A\) cho \(\cos x \ne 0\), ta có:
\(A = \frac{{3\frac{{\sin x}}{{\cos x}} - 5\frac{{\cos x}}{{\cos x}}}}{{4\frac{{\sin x}}{{\cos x}} + \frac{{\cos x}}{{\cos x}}}} = \frac{{3\tan x - 5}}{{4\tan x + 1}} = \frac{{3\left( { - 2} \right) - 5}}{{4\left( { - 2} \right) + 1}} = \frac{{11}}{7}\)
b) Chia cả tử và mẫu của \(B\) cho \({\cos ^2}x \ne 0\), ta có:
\(B = \frac{{2\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - 3\frac{{\sin x\cos x}}{{{{\cos }^2}x}} - \frac{{{{\cos }^2}x}}{{{{\cos }^2}x}}}}{{\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \frac{{\sin x\cos x}}{{{{\cos }^2}x}}}} = \frac{{2{{\left( {\frac{{\sin x}}{{\cos x}}} \right)}^2} - 3\frac{{\sin x}}{{\cos x}} - 1}}{{{{\left( {\frac{{\sin x}}{{\cos x}}} \right)}^2} + \frac{{\sin x}}{{\cos x}}}}\)
\( = \frac{{2{{\tan }^2}x - 3\tan x - 1}}{{{{\tan }^2}x + \tan x}} = \frac{{2{{\left( { - 2} \right)}^2} - 3\left( { - 2} \right) - 1}}{{{{\left( { - 2} \right)}^2} + \left( { - 2} \right)}} = \frac{{13}}{2}\)
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 11
Bài 8. Lợi dụng địa hình, địa vật
Giáo dục pháp luật
Chuyên đề 11.2: Một số vấn đề về du lịch thế giới
Chủ đề 4. Trách nhiệm với gia đình
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11