SBT Toán 11 - Chân trời sáng tạo tập 1

Câu hỏi 10 - Mục Bài tập trang 32

1. Nội dung câu hỏi

Chiều cao h(m) của một cabin trên vòng quay vào thời điểm t giây sau khi bắt đầu chuyển động được cho bởi công thức \(h\left( t \right) = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right)\).

a) Cabin đạt độ cao tối đa là bao nhiêu?

b) Sau bao nhiêu giây thì cabin đạt độ cao 40m lần đầu tiên?


2. Phương pháp giải

a) Sử dụng kiến thức về hàm số lượng giác: \(\sin x \le 1\) với mọi số thực x.

b) Sử dụng kiến thức về phương trình lượng giác cơ bản để giải: Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha  + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi  - \alpha  + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha  = m\).

Đặc biệt: \(\sin u = \sin v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi  - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

 

3. Lời giải chi tiết 

a) Vì \(\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) \le 1 \Rightarrow 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) \le 50\).

Do đó, cabin đạt độ cao tối đa là 50m.

b) Thời gian để cabin đạt độ cao 40m lần đầu tiên là nghiệm của phương trình \(40 = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right)\) với \(t > 0\) và t là giá trị nhỏ nhất.

\(40 = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) \) \( \Leftrightarrow \sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) = \frac{1}{2} \) \( \Leftrightarrow \sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) = \sin \frac{\pi }{6}\)

\( \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{25}}t + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\\frac{\pi }{{25}}t + \frac{\pi }{3} = \pi  - \frac{\pi }{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}t = \frac{{ - 25}}{6} + k50\\t = \frac{{25}}{2} + k50\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

+) Xét \(t = \frac{{ - 25}}{6} + k50\left( {k \in \mathbb{Z}} \right)\) và \(t > 0\) ta có: \(\frac{{ - 25}}{6} + k50 > 0 \) \( \Leftrightarrow k > \frac{1}{{12}}\). Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ {1;2;3;...} \right\}\). Mà t đạt giá trị dương nhỏ nhất nên \(t = \frac{{ - 25}}{6} + 1.50 = \frac{{275}}{6}\) (với \(k = 1\))

+) Xét \(t = \frac{{25}}{2} + k50\left( {k \in \mathbb{Z}} \right)\) và \(t > 0\) ta có: \(\frac{{25}}{2} + k50 > 0 \) \( \Leftrightarrow k > \frac{{ - 1}}{4}\). Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;...} \right\}\). Mà t đạt giá trị dương nhỏ nhất nên \(t = \frac{{25}}{2} + 0.50 = 12,5\) (với \(k = 0\))

Vì \(\frac{{275}}{6} > 12,5\) nên sau 12,5 giây thì cabin đạt độ cao 40m lần đầu tiên.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved