1. Nội dung câu hỏi
Chiều cao h(m) của một cabin trên vòng quay vào thời điểm t giây sau khi bắt đầu chuyển động được cho bởi công thức \(h\left( t \right) = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right)\).
a) Cabin đạt độ cao tối đa là bao nhiêu?
b) Sau bao nhiêu giây thì cabin đạt độ cao 40m lần đầu tiên?
2. Phương pháp giải
a) Sử dụng kiến thức về hàm số lượng giác: \(\sin x \le 1\) với mọi số thực x.
b) Sử dụng kiến thức về phương trình lượng giác cơ bản để giải: Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha = m\).
Đặc biệt: \(\sin u = \sin v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)
3. Lời giải chi tiết
a) Vì \(\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) \le 1 \Rightarrow 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) \le 50\).
Do đó, cabin đạt độ cao tối đa là 50m.
b) Thời gian để cabin đạt độ cao 40m lần đầu tiên là nghiệm của phương trình \(40 = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right)\) với \(t > 0\) và t là giá trị nhỏ nhất.
\(40 = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) \) \( \Leftrightarrow \sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) = \frac{1}{2} \) \( \Leftrightarrow \sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) = \sin \frac{\pi }{6}\)
\( \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{25}}t + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\\frac{\pi }{{25}}t + \frac{\pi }{3} = \pi - \frac{\pi }{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}t = \frac{{ - 25}}{6} + k50\\t = \frac{{25}}{2} + k50\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
+) Xét \(t = \frac{{ - 25}}{6} + k50\left( {k \in \mathbb{Z}} \right)\) và \(t > 0\) ta có: \(\frac{{ - 25}}{6} + k50 > 0 \) \( \Leftrightarrow k > \frac{1}{{12}}\). Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ {1;2;3;...} \right\}\). Mà t đạt giá trị dương nhỏ nhất nên \(t = \frac{{ - 25}}{6} + 1.50 = \frac{{275}}{6}\) (với \(k = 1\))
+) Xét \(t = \frac{{25}}{2} + k50\left( {k \in \mathbb{Z}} \right)\) và \(t > 0\) ta có: \(\frac{{25}}{2} + k50 > 0 \) \( \Leftrightarrow k > \frac{{ - 1}}{4}\). Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;...} \right\}\). Mà t đạt giá trị dương nhỏ nhất nên \(t = \frac{{25}}{2} + 0.50 = 12,5\) (với \(k = 0\))
Vì \(\frac{{275}}{6} > 12,5\) nên sau 12,5 giây thì cabin đạt độ cao 40m lần đầu tiên.
Chủ đề 3. Công nghệ thức ăn chăn nuôi
Chương 1: Cân bằng hóa học
Chuyên đề 3: Một số yếu tố vẽ kĩ thuật
CHƯƠNG II. DÒNG ĐIỆN KHÔNG ĐỔI
Bài 19: Carboxylic acid
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11