Câu hỏi 10 - Mục Bài tập trang 36

1. Nội dung câu hỏi

Rút gọn rồi tính giá trị biểu thức:

a) \(A = x + 1 - \frac{{{x^2} - 4}}{{x - 1}}\) tại \(x =  - 4\)

b) \(B = \frac{1}{{5 - x}} - \frac{{{x^2} + 5x}}{{{x^2} - 25}}\) tại \(x = 99\)

c) \(C = \frac{1}{{x - 1}} - \frac{{2x}}{{{x^3} - {x^2} + x - 1}}\) tại \(x = 0,7\)

d) \(D = \frac{1}{{x\left( {x + 1} \right)}} + \frac{1}{{\left( {x + 1} \right)\left( {x + 2} \right)}} + \frac{1}{{x + 2}}\) tại \(\frac{1}{{23}}\)

 

2. Phương pháp giải 

Muốn rút gọn hai phân thức, ta có thể làm như sau:

Bước 1: phân tích tử và mẫu thành nhân tử (nếu cần)

Bước 2: tìm nhân tử chung của 2 phân thức rồi quy đồng.

Bước 3: thực hiện rút gọn sau đó tính giá trị của phân thức đã rút gọn

 

3. Lời giải chi tiết

a) Điều kiện xác định của biểu thức \(A\) là \(x \ne 1\).

Ta có:

\(\begin{array}{l}A = A = x + 1 - \frac{{{x^2} - 4}}{{x - 1}} = \frac{{\left( {x + 1} \right)\left( {x - 1} \right)}}{{x - 1}} - \frac{{{x^2} - 4}}{{x - 1}} = \frac{{{x^2} - 1 - \left( {{x^2} - 4} \right)}}{{x - 1}}\\ = \frac{{{x^2} - 1 - {x^2} + 4}}{{x - 1}} = \frac{3}{{x - 1}}\end{array}\)

Vậy giá trị của biểu thức \(A\) tại \(x =  - 4\) là: \(\frac{3}{{ - 4 - 1}} = \frac{{ - 3}}{5}\)

b) Điều kiện xác định của biểu thức \(B\) là \(x \ne  \pm 5\)

Ta có:

\(\begin{array}{l}B = \frac{1}{{5 - x}} - \frac{{{x^2} + 5x}}{{{x^2} - 25}} = \frac{{ - 1}}{{x - 5}} - \frac{{{x^2} + 5x}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}\\ = \frac{{ - 1\left( {x + 5} \right)}}{{\left( {x - 5} \right)\left( {x + 5} \right)}} - \frac{{{x^2} + 5x}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}\\ = \frac{{ - 1\left( {x + 5} \right) - {x^2} - 5x}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}\\ = \frac{{ - x - 5 - {x^2} - 5x}}{{\left( {x - 5} \right)\left( {x + 5} \right)}}\\ = \frac{{ - \left( {x + 5} \right) - \left( {{x^2} + 5x} \right)}}{{\left( {x - 5} \right)\left( {x + 5} \right)}}\\ = \frac{{ - \left( {x + 5} \right) - x\left( {x + 5} \right)}}{{\left( {x - 5} \right)\left( {x + 5} \right)}}\\ = \frac{{\left( { - 1 - x} \right)\left( {x + 5} \right)}}{{\left( {x - 5} \right)\left( {x + 5} \right)}} = \frac{{ - 1 - x}}{{x - 5}}\end{array}\)

Vậy giá trị của biểu thức \(B\) tại \(x = 99\) là: \(\frac{{ - 1 - 99}}{{99 - 5}} = \frac{{ - 50}}{{47}}\)

c) Ta có: \({x^3} - {x^2} + x - 1 = \left( {{x^3} - {x^2}} \right) + \left( {x - 1} \right) = {x^2}\left( {x - 1} \right) + \left( {x - 1} \right) = \left( {x - 1} \right)\left( {{x^2} + 1} \right)\)

Điều kiện xác định của biểu thức \(C\) là: \(x \ne 1\)

Suy ra

\(\begin{array}{l}C = \frac{1}{{x - 1}} - \frac{{2x}}{{{x^3} - {x^2} + x - 1}} = \frac{1}{{x - 1}} - \frac{{2x}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\\ = \frac{{{x^2} + 1}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}} - \frac{{2x}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\\ = \frac{{{x^2} + 1 - 2x}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\\ = \frac{{x - 1}}{{{x^2} + 1}}\end{array}\)

Vậy giá trị của biểu thức \(C\) tại \(x = 0,7\) là: \(\frac{{0,7 - 1}}{{0,{7^2} + 1}} = \frac{{ - 30}}{{149}}\)

d) Điều kiện xác định của biểu thức \(D\) là: \(x \ne 0;x \ne  - 1;x \ne  - 2\)

Ta có:

\(\begin{array}{l}D = \frac{1}{{x\left( {x + 1} \right)}} + \frac{1}{{\left( {x + 1} \right)\left( {x + 2} \right)}} + \frac{1}{{x + 2}}\\ = \left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right) + \left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right) + \frac{1}{{x + 2}} = \frac{1}{x}\end{array}\)

Vậy giá trị của biểu thức \(D\) tại \(x = \frac{1}{{23}}\) là: \(\frac{1}{{\frac{1}{{23}}}} = 23\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved