Đề bài
Cho hàm số \(f\left( x \right) = 2{x^2} + 8x + 8\). Phát biểu nào sau đây là đúng?
A. Hàm số đồng biến trên khoảng \(\left( { - 4; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \infty ; - 4} \right)\)
B. Hàm số đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\)
C. Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\), nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\)
D. Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 4} \right)\), nghịch biến trên khoảng \(\left( { - 4; + \infty } \right)\)
Phương pháp giải - Xem chi tiết
Xác định đỉnh của parabol và các khoảng đồng biến, nghịch biến của hàm số
Lời giải chi tiết
\(f\left( x \right) = 2{x^2} + 8x + 8\) có \(a = 2 > 0,b = 8,c = 8 \Rightarrow x = \frac{{ - b}}{{2a}} = \frac{{ - 8}}{{2.2}} = - 2\)
\( \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\)
Chọn B
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10